### IT 308 D – TOPICOS EM TECNICAS DE ALTA TENSÀO II.

Prof. José Pissolato Filho

Campinas, março 2020

#### CHAPTER FOUR

## **Transmission Lines**

#### $\Rightarrow$ Típico condutor utilizado em linhas de transmissão.



⇒(a) 2 condutores / (b) 1 condutor sobre o solo infinito / (c) cabo coaxial



 $\Rightarrow$  (a) linha de microfita / (b) microfita / (c) PCB





**FIGURE 4.3** The per-unit-length equivalent circuit of a two-conductor line for the TEM mode of propagation: (a) the equivalent circuit for a  $\Delta z$  section; (b) modeling the entire line as a cascade of  $\Delta z$  sections from which the transmission line equations are derived in the limit as  $\Delta z \rightarrow 0$ .

- ⇒Uma linha de transmissão é um meio de propagação de sinais elétricos.
- $\Rightarrow$  Pode ser constituída por:
- $\Rightarrow$  Dois condutores paralelos
- $\Rightarrow$  Duas placas paralelas
- $\Rightarrow$  Dois condutores coaxiais
- ⇒ De maneira geral pode ser constituída por dois condutores separados por um dielétrico.

- ⇒A análise do comportamento de uma linha de transmissão pode ser feita de maneira rigorosa através da teoria eletromagnética.
- ⇒Aqui, no entanto, seguiremos um caminho alternativo, empregando o método tradicional baseado na teoria de circuitos de elementos distribuídos.

 $\Rightarrow$  Seção infinitesimal de uma linha de transmissão.



Fig.1 - Linha de transmissão uniforme.

 $\Rightarrow$ Onde:

⇒ R= Resistência série da linha por unidade de comprimento [Ω/m]
 ⇒ L= Indutância série da linha por unidade de comprimento [H/m]
 ⇒ C= Capacitância paralela da linha por unidade de comprimento [F/m]

⇒G= Condutância paralela da linha por unidade de comprimento [S/m]

#### $\Rightarrow$ Introdução

 $\Rightarrow$  Aplicando a lei das malhas de Kirchhoff ao circuito:

$$e(x,t) = R\Delta x \quad i(x + \Delta x,t) + L\Delta x \quad \frac{\partial i}{\partial t} \left(x + \Delta x,t\right) + e(x + \Delta x,t) \quad (1)$$

⇒onde e(x,t) e i(x,t) são as variáveis dependentes mais usuais e "x" e "t" são as variáveis independentes (espaço e tempo).

 $\Rightarrow$  Dividindo (1) por  $\Delta x$  e rearrajando os termos, temos:

$$\left[R + L\frac{\partial}{\partial t}\right]i(x + \Delta x, t) = -\frac{e(x + \Delta x, t) - e(x, t)}{\Delta x}$$
(2)

 $\Rightarrow$  Vejamos agora, a lei dos nós de Kirchhoff:

$$i(x + \Delta x, t) = i(x, t) - G\Delta x \cdot e(x, t) - C\Delta x \cdot \frac{\partial}{\partial t} e(x, t)$$
 (3)

 $\Rightarrow$  Substituindo (3) em (2), tem-se:

$$\left[R + L \frac{\partial}{\partial t}\right] \left[i(x,t) - G \Delta x \cdot e(x,t) - C \Delta x \frac{\partial}{\partial t} e(x,t)\right] = -\frac{e(x + \Delta x, t) - e(x,t)}{\Delta x} \quad (4)$$

⇒O modelo assumido fica mais próximo da situação real à medida que  $\Delta x$  tende a zero. Aplicando o limite na eq.(4), para  $\Delta x \rightarrow 0$ , tem-se:

$$\left[R + L \frac{\partial}{\partial t}\right] i(x,t) = -\frac{\partial}{\partial x} e(x,t)$$
(5)

⇒É importante observar que o 2° membro de (4) dá origem ao negativo da derivada parcial da tensão e(x,t) na linha em relação a x.

⇒ Reescrevendo a eq.(3) numa forma mais apropriada e dividindo por  $\Delta x$ , obtém-se:

$$\left[G+C \ \frac{\partial}{\partial t}\right] e(x,t) = - \frac{i(x+\Delta x,t) - i(x,t)}{\Delta x}$$
(6)

 $\Rightarrow$  Fazendo o limite de (6) quando  $\Delta x \rightarrow 0$ , tem-se:

$$\left[G+C \ \frac{\partial}{\partial t}\right] e(x,t) = - \ \frac{\partial}{\partial x} \ i(x,t)$$

 $\Rightarrow$ A eq.(5) indica que há **queda de tensão** com a distância x na linha pela passagem da corrente nos elementos R e L em série na linha.

$$\left[R+L \ \frac{\partial}{\partial t}\right]i(x,t) = - \frac{\partial}{\partial x} \ e(x,t)$$

 $\Rightarrow$ A eq.(7) mostra que há **queda de corrente** com a distância x na linha devido à existência de tensão nos elementos paralelos (de fuga) da linha, ou seja G e C. São correntes que retornam antes do sinal no fim da linha.

$$\left[G+C \ \frac{\partial}{\partial t}\right] e(x,t) = - \ \frac{\partial}{\partial x} \ i(x,t)$$

# Equações diferenciais da linha expressas somente em função da tensão ou somente em função da corrente

 $\Rightarrow$ Diferenciando-se a eq.(5) em relação a x, e a eq.(7) em relação a t, para eliminar a corrente.

$$\left[\frac{R+L\frac{\partial}{\partial t}}{\partial t}i(x,t) = -\frac{\partial}{\partial x}e(x,t)\right]$$

$$R\frac{\partial}{\partial x}i(x,t) + L\frac{\partial^{2}}{\partial x\partial t}i(x,t) = -\frac{\partial^{2}}{\partial x^{2}}e(x,t)$$

$$\left[\frac{G+C\frac{\partial}{\partial t}}{\partial t}e(x,t) = -\frac{\partial}{\partial x}i(x,t)\right]$$

$$R\frac{\partial}{\partial t}e(x,t) + C\frac{\partial^{2}}{\partial t^{2}}e(x,t) = -\frac{\partial^{2}}{\partial x\partial t}i(x,t)$$

$$(8)$$

$$(9)$$

# Equações diferenciais da linha expressas somente em função da tensão ou somente em função da corrente

 $\Rightarrow$ Substituindo-se (9) em (8) e utilizando para o 1º termo de corrente de (8) o seu valor em tensão fornecido pela eq. (7), temos:

$$-RGe(x,t) - RC \frac{\partial}{\partial t} e(x,t) - LG \frac{\partial}{\partial t} e(x,t) - LC \frac{\partial^2}{\partial t^2} e(x,t) + \frac{\partial^2}{\partial x^2} e(x,t) = 0 \quad (10)$$
  

$$\Rightarrow \text{Rearranjando} \quad (10) \text{ e omitindo a dependência} \quad (x,t) \text{ para uma melhor visualização, temos:}$$

$$\frac{\partial^2 e}{\partial x^2} - LC \frac{\partial^2 e}{\partial t^2} - (RC + LG) \frac{\partial e}{\partial t} - RG \cdot e = 0$$
(11)

### ⇒ Equações diferenciais da linha expressas somente em função da tensão ou somente em função da corrente

⇒ De forma análoga, pode-se obter uma eq. diferencial parcial só em função da corrente, diferenciando-se (5) em relação a t e e (7) em relação a x. O resultado é :

$$\frac{\partial^2 i}{\partial x^2} - LC \frac{\partial^2 i}{\partial t^2} - (RC + LG) \frac{\partial i}{\partial t} - RG \cdot i = 0$$
(12)

⇒As eqs. (11) e (12) são conhecidas como equações diferenciais parciais de onda.

#### Linha não dissipativa ideal ou sem perdas

 $\Rightarrow$ Nessa condição temos: R = G = 0

 $\Rightarrow$ Neste caso, as eqs. (11) e (12) se simplificam para:

$$\frac{\partial^2}{\partial x^2} e(x,t) = LC \frac{\partial^2}{\partial t^2} e(x,t)$$
(13)

$$\frac{\partial^2}{\partial x^2} i(x,t) = LC \frac{\partial^2}{\partial t^2} i(x,t)$$

(14)

 $\Rightarrow$  Verifiquemos que uma solução para a eq. (13) é:

$$e(x,t) = f_1(t - \sqrt{LC} x)$$
 (15)

⇒Onde f<sub>1</sub> é qualquer função unívoca do argumento  $(t - \sqrt{LC x})$ . Além disso f<sub>1</sub> tem dimensão de tensão (dada em volts, no sistema internacional).

$$\frac{\partial^2}{\partial x^2} \ e(x,t) = LC \ \frac{\partial^2}{\partial t^2} \ e(x,t)$$

#### Linha não dissipativa ideal/sem perdas

 $\Rightarrow$ Vejamos se a eq. (15) é uma solução da eq. (13).

$$\frac{\partial}{\partial x} e(x,t) = -\sqrt{LC} f_1'(t - \sqrt{LC} x)$$
(16)

 $\Rightarrow$ onde f' significa a derivada de f<sub>1</sub> em relação ao argumento composto  $t - \sqrt{LC} x$ 

$$\frac{\partial^2}{\partial x^2} e(x,t) = LC f_1^{"} (t - \sqrt{LC} x)$$
(17)

 $\Rightarrow$ que é o 1° membro da eq. (13).

$$\frac{\partial^2}{\partial x^2} e(x,t) = LC f_1'' (t - \sqrt{LC} x)$$

 $\Rightarrow$ O 2° membro da eq. (13) fica:

$$LC \ \frac{\partial^2}{\partial t^2} \ e(x,t) = LC \frac{\partial^2}{\partial t^2} f_1(t - \sqrt{LC} \ x) = LC f_1''(t - \sqrt{LC} \ x)$$
(18)

 $\Rightarrow$ Comparando (17) com (18), observa-se que a expressão (15) é realmente uma solução para a eq. (13).

 $\Rightarrow e(x,t) = f(t - \sqrt{LC} x)$  corresponde a uma onda de tensão propagando-se para a direita (na direita de x crescente).

⇒ A função f<sub>1</sub> é a forma de onda que se propaga e tem a ver, na verdade, com o sinal que foi injetado na linha. Note que para x = 0 a eq.(15) fornece

$$e(0,t) = f_1(t)$$
(19)

⇒ou seja, a tensão no início da linha (em x = 0) é a função f<sub>1</sub>, que representa a forma do sinal injetado na linha. A eq. (19) é pois, uma condição de contorno para a solução da tensão e(x,t) na linha.

 $\Rightarrow$  Para efeito de visualização do fenômeno de onda, suponha um caso genérico para f<sub>1</sub>, como diagramado abaixo:



Perturbação de tensão viajando na linha ideal.

⇒ Suponha que haja um observador montado na onda, no ponto marcado P. Ele deve ver a perturbação (onda) parada. O argumento  $t - \sqrt{LCx}$  permanece constante para ele, ou seja:

$$t - \sqrt{LC} \ x = K \tag{20}$$

 $\Rightarrow$  Fazendo-se a derivada em relação ao tempo da eq.(20) tem-se:

$$1 - \sqrt{LC} \frac{dx}{dt} = 0 \qquad \qquad \therefore \frac{dx}{dt} = v = 1/\sqrt{LC} \left[ \frac{m}{s} \right]$$
(21)

- ⇒A eq. (21) indica que a perturbação ou onda se move para a direita (x crescente) com a velocidade de propagação indicada em (21).
- ⇒Observe de (20) que, se o tempo t aumenta (o tempo passa), x deve crescer para que se mantenha a constante K.

⇒Como num problema de causa e efeito observa-se que associada à onda de tensão expressa na eq. (15), deve existir uma correspondente onda de corrente. Tentemos uma correspondente onda de corrente para a direita como sendo:

$$i(x,t) = \frac{f_1(t - \sqrt{LC} x)}{Z_0}$$
 (22)

 $\Rightarrow$  onde Z<sub>0</sub> deve ser determinada.

 $\Rightarrow$  Substituindo (22) na eq. (5) (com R = 0) tem-se:

$$\left[R+L \ \frac{\partial}{\partial t}\right]i(x,t) = -\frac{\partial}{\partial x} \ e(x,t)$$

$$L \frac{\partial}{\partial t} \left[ \frac{f_1(t - \sqrt{LC} x)}{Z_0} \right] = -\frac{\partial}{\partial x} f_1(t - \sqrt{LC} x) \Rightarrow$$
$$\Rightarrow \frac{L}{Z_0} f_1'(t - \sqrt{LC} x) = \sqrt{LC} f_1'(t - \sqrt{LC} x) \qquad (23)$$

⇒ Para que (23) seja verdadeira, é necessário que a constante arbitrada  $Z_0$  verifique a relação:  $L/Z_0 = \sqrt{LC}$  ou  $Z_0 = L/\sqrt{LC}$ 

$$\Rightarrow$$
 Ou seja,  $Z_0 = R_0 = \sqrt{L/C}$  [Ω] (24)

⇒ A grandeza  $Z_0$  é conhecida como a **impedância característica** da linha sem perdas, e é dada em  $\Omega$  quando L é dado em H/m, e C em F/m. Para a linha sem perdas, como se nota de (24),  $Z_0$  é um número puramente real, ou seja,  $Z_0 = R_0$ , pois L e C são sempre números reais positivos. Desta forma a expressão (22) é de fato a solução de corrente associada à solução de tensão expressa na eq.(15).

 $\Rightarrow$  Nota sobre a convenção de sinais:



⇒ Fig. 3 – Convenção de sinais para tensão e corrente na linha

⇒As soluções já encontradas de tensão (eq.(15)) e a sua correspondente solução de corrente (eq.(22) são ambas perturbações que viajam para a direita (x crescente, na notação da Fig.3). Para que as soluções de e(x,t) e de i(x,t) se completem é necessário incluir também a possibilidade de se ter onda viajando para a esquerda, ou seja, no sentido de x decrescente. Sendo assim, vamos incluir também a solução abaixo para a eq. diferencial (13).

$$e(x,t) = f_2(t + \sqrt{LC} x)$$
 (25)

⇒A correspondente solução para a corrente pode ser encontrada se imaginarmos que esta solução difere de (25) apenas por uma constante, ou seja,

$$i(x,t) = \frac{f_2(t + \sqrt{LC} \ x)}{K}$$
 (26)

⇒ Uma substituição de (26) na eq.(5) (com R = 0) indica que (26) é a correspondente solução de corrente desde que a constante K seja igual a  $-Z_0$ . A solução procurada para a corrente que viaja para a esquerda é então :

$$i(x,t) = -\frac{f_2(t + \sqrt{LC} \ x)}{Z_0}$$
(27)

⇒ Depois de toda esta discussão só nos resta colecionarmos as várias soluções de tensão e de corrente para as eqs. Diferenciais parciais (13) e (14) da linha ideal, ou seja:



⇒O sinal negativo para a 2 <sup>a</sup> parcela de (29) advém da convenção de sinais de tensão e de corrente já adotada.

# ⇒Reflexões na linha sem perdas. Coeficientes de reflexão de tensão e de corrente

⇒ As soluções (28) e (29) encontradas na secção anterior deve-se fazer uma consideração. Há obviamente a possibilidade de que  $f_2$ seja uma função completamente independente de  $f_1$ . Este seria o caso de se ter duas fontes de tensão independentes;  $f_1$  no lado esquerdo (x = 0) de uma linha finita, e  $f_2$  no lado direito (x =  $\ell$ ) desta mesma linha. Como o sistema é linear, a solução completa da tensão e(x,t) na linha é a soma das soluções obtidas individualmente.

# ⇒Reflexões na linha sem perda. Coeficientes de reflexão de tensão e de corrente

⇒ Entretanto, nesta seção, estamos interessados no caso em que  $f_2$ não é uma função qualquer independente de  $f_1$ . Pelo contrário, as perturbações  $f_1$  e  $f_2$  podem ser fortemente dependentes, uma vez que uma pode ser simplesmente a reflexão da outra num ponto qualquer de descontinuidade da linha.

# ⇒Reflexões na linha sem perda. Coeficientes de reflexão de tensão e de corrente

⇒Antes de se atacar o problema das reflexões na linha ideal, façamos uma notação mais adequada, ou seja:

$$f_{1}(t - \sqrt{LC} x) = e^{+}(x,t) \qquad \text{tensão } p/a \text{ direita} \qquad (30)$$

$$f_{2}(t + \sqrt{LC} x) = e^{-}(x,t) \qquad \text{tensão } p/a \text{ esquerda} \qquad (31)$$

$$\frac{f_{1}(t - \sqrt{LC} x)}{Z_{0}} = \frac{e^{+}(x,t)}{Z_{0}} = i^{+}(x,t) \qquad \text{corrente } p/a \text{ direita} \qquad (32)$$

$$\frac{-f_{2}(t + \sqrt{LC} x)}{Z_{0}} = \frac{-e^{-}(x,t)}{Z_{0}} = i^{-}(x,t) \qquad \text{corrente } p/a \text{ direita} \qquad (33)$$

# ⇒Reflexões na linha sem perda. Coeficientes de reflexão de tensão e de corrente

⇒ Suponhamos uma linha de transmissão ideal terminada em x =  $\ell$ [m] por um resistor de carga  $R_c$  [Ω], como ilustrado na Fig. 4.



Fig.4 - Reflexão na carga.
⇒As tensões e as correntes totais na carga devem estar relacionadas pela lei de Ohm:

$$\frac{e_{c}}{i_{c}} = R_{c}$$
(34)  
$$\frac{e_{c}^{+} + e_{c}^{-}}{i_{c}^{+} + i_{c}^{-}} = R_{c}$$
(35)

⇒Onde o índice "c" significa tensões e correntes na posição da carga.

 $\Rightarrow$  Usando as relações (32) e (33), tem-se:

$$\frac{e_{c}^{+} + e_{c}^{-}}{\frac{e_{c}^{+}}{Z_{0}} - \frac{e_{c}^{-}}{Z_{0}}} = R_{c}$$
(35a)

⇒ Dividindo o numerador e o denominador por  $e_c^+$  e rearranjando os termos, obtém-se :

$$\frac{e_c^-}{e_c^+} = \frac{R_c - Z_0}{R_c + Z_0}$$
(35b)

⇒A relação  $e_c^- / e_c^+$  é conhecida como coeficiente de reflexão de tensão  $\Gamma_c$  na posição da carga, ou seja:

$$\Gamma_{c} = \frac{e_{c}^{-}}{e_{c}^{+}} = \frac{R_{c} - Z_{0}}{R_{c} + Z_{0}}$$
(36)

⇒Na eq. (36) nota-se que o único valor de  $R_c$  que evita as reflexões é  $R_c = Z_0 = R_0 [\Omega]$ . Neste caso,  $\Gamma_c = 0$  e  $e_c^- = \Gamma_c \cdot e_c^+ = 0$ 

⇒ Para os casos extremos de  $R_c = 0$  (curto) e  $R_c = \infty$  (aberto) tem-se  $\Gamma_c = -1$  e  $\Gamma_c = +1$ , respectivamente. Para estas duas situações tem-se:

$$\Rightarrow e_c^- = -e_c^+$$
 e  $e_c^- = e_c^+$ , respectivamente

⇒O caso de terminação em curto  $R_c = 0 [\Omega]$  pode ser entendido da seguinte forma. Se incidir uma tensão  $e_c^+ = 1V$  na carga, há a criação instantânea de uma tensão refletida e de valor -1V, ou seja, de valor contrário uma vez que no curto  $\Gamma_c = -1$ . A tensão total no curto deve ser igual a zero.

 $\Rightarrow$ O coeficiente de reflexão de corrente  $\Gamma_c$  na posição da carga pode também ser definido de forma análoga àquela já feita para tensão. Pode-se mostrar que a expressão de  $\Gamma_c$  é dada por :

$$\Gamma_{c}^{'} = \frac{i_{c}^{-}}{i_{c}^{+}} = \frac{Z_{0} - R_{c}}{R_{c} + Z_{0}} = -\Gamma_{c}$$
(37)

 $\Rightarrow$  a considerações de reflexão de corrente, para os vários casos de  $R_c$  são semelhantes àquelas já feitas para a tensão.

# ⇒Coeficientes de transmissão de tensão e de corrente na posição da carga.

⇒ Referindo-se novamente à Fig. 4, pode-se definir o coeficiente de transmissão de tensão na posição da carga como sendo:

$$\Gamma_{C} = \frac{\text{tensão total}}{\text{tensão incidente}} = \frac{e_{C}}{e_{C}^{+}}$$
(38)

 $\Rightarrow$  Para obter  $\Gamma_{\mathcal{C}}$  vamos utilizar a relação abaixo já obtida posteriormente:

$$\frac{e_c}{\frac{e_c^+}{Z_0} - \frac{e_c^-}{Z_0}} = R_c$$

⇒Coeficientes de transmissão de tensão e de corrente na posição da carga.

 $\Rightarrow$  Vamos dividi-la por  $e_c^+$ 

$$\frac{e_c / e_c^+}{\frac{1}{Z_0} - \frac{e_c^-}{e_c^+} \cdot \frac{1}{Z_0}} = R_c$$

$$\therefore \tau_{c} = \frac{e_{c}}{e_{c}^{+}} = \frac{R_{c}}{Z_{0}} (1 - \Gamma_{c})$$
(39)

# ⇒Coeficientes de transmissão de tensão e de corrente na posição da carga.

 $\Rightarrow$  Usando o valor de  $\Gamma_c$  já obtido na eq. (36), tem-se:

$$\tau_{c} = \frac{e_{c}}{e_{c}^{+}} = \frac{2R_{c}}{R_{c} + Z_{0}}$$
(40)

 $\Rightarrow$ O coeficiente de transmissão de corrente  $\tau_c$  na posição da carga pode ser obtido de modo análogo, encontrando-se :

$$\tau_{c}^{'} = \frac{i_{c}}{i_{c}^{+}} = \frac{2Z_{0}}{R_{c} + Z_{0}}$$
(41)

- ⇒As múltiplas reflexões que podem ocorrer numa linha podem ser melhor visualizadas, fazendo uso do chamado diagrama "zigzag". Este diagrama será explicado mediante a aplicação do mesmo problema simples.
- ⇒ Seja o caso de uma linha sem perdas R = G = 0 (ver Fig. 6) excitada por um degrau de tensão de amplitude E volts, no instante t = 0 e na posição x (entrada da linha).

 $\Rightarrow$  A condição de contorno é então:

$$e(0,t) = \frac{E}{2} \cdot u(t) [V]$$
 (42)

 $\Rightarrow$  onde u(t) é a notação para o degrau unitário.



 $\Rightarrow$  Fig. 5 – Degrau unitário de tensão ocorrendo em t = 0.



 $\Rightarrow$  Fig. 6 – Exemplo para aplicação do digrama "zig-zag".



Γ. = 0.5



SENDING END

RECEIVING END



Figure 8-9. V, and V, as functions of time.



Figure 8-10. Current Bounce Diagram.

S. r. 10





Figure 8-11. I, and I, as functions of time.

#### EXEMPLO Diagrama "Zig-Zag" para as reflexões na linha.

 $\Rightarrow$ A fonte de tensão é real, e tem uma resistência interna  $R_g$  que, no exemplo dado, coincide com a impedância (ou resistência) característica da linha. Ou seja,  $R_g = R_0 = \sqrt{L/C} \left[ \alpha \right]$ bém, neste caso, o resistor de carga vale  $R_c = 2R_0 \left[ \Omega \right]$ .

⇒Uma vez que a linha fornece ondas como solução para a tensão e para a corrente, o degrau gerado na boca da linha sai viajando pela linha, com a velocidade de propagação  $v = 1/\sqrt{LC} \lfloor m/s \rfloor$ 

 $\Rightarrow$ Depois de decorridos  $t = T = \frac{l}{v}$  [s] degrau de tensão deve atingir

a carga colocada em  $x = \ell$ .

⇒ Para a construção do diagrama "zig-zag" de tensão é necessário obter os coeficientes de reflexão na posição do gerador  $(\Gamma_g)$ . ⇒ No exemplo dado tem-se:

$$\Gamma_{c} = \frac{R_{c} - Z_{0}}{R_{c} + Z_{0}} = \frac{2R_{0} - R_{0}}{2R_{0} + R_{0}} = \frac{R_{0}}{3R_{0}} = \frac{1}{3}$$
(43)  
$$\Gamma_{g} = \frac{R_{g} - Z_{0}}{R_{g} + Z_{0}} = \frac{R_{0} - R_{0}}{R_{0} + R_{0}} = 0$$
(44)

a) Tensão

⇒O diagrama "zig-zag" de tensão está ilustrado na Fig. 7.a. O diagrama de corrente pode ser visto na Fig. 7.b.



Fig. 7 - Diagrama "zig-zag" para o problema da Fig.6.

b) Corrente

- ⇒Como se nota na Fig. 7, o diagrama "zig-zag" é na verdade um diagrama espaço x tempo, onde a distância x é colocada na horizontal, desde x = 0 até o final da linha x = ℓ. O tempo, por outro lado, é marcado na vertical, e cresce para baixo na Fig.7.
- ⇒ No ponto x = 0 e t = 0 é iniciado o vai-e-vem das ondas, para este problema em questão. A tensão inicial injetada na linha é facilmente obtida através de uma divisão resistiva da tensão E[V] da bateria entre o valor  $Z_0 = R_0 [\Omega]$  "mostrado" pela linha e a sua própria resistência interna  $R_q$ , ou seja :

$$e_g^+ = E \cdot \frac{R_0}{R_g + R_0}$$



- ⇒Como  $R_g = R_0$  (o gerador está casado com a linha) a eq. (45) fornece o valor inicial injetado  $e_g^+ = E/2[V]$ . O degrau de amplitude  $E_2$  viaja então pela linha e, depois de T [s], atinge o resistor de carga  $R_c = 2R_0$ . Aí ocorre então uma reflexão.
- ⇒ A tensão incidente  $E_{2}$  multiplicada por  $\Gamma_{c} = 1/3$  fornece então o valor  $E_{6}$  para a tensão degrau, que retorna ao gerador depois de T segundos adicionais, ou seja, no instante t = 2T[s]. Neste instante, como  $R_{g} = R_{0} [\Omega], \Gamma_{g} = 0$ , não há mais ondas refletidas.

- ⇒ Para o diagrama "zig-zag" de corrente o raciocínio é semelhante àquele já feito acima para a tensão. Obviamente, usa-se agora os coeficientes de reflexão de corrente  $\Gamma$ ' c e  $\Gamma$ ' g . O valor inicial de corrente é  $E/2Z_0$ , ou seja, a tensão inicial injetada dividida pela impedância característica  $Z_0 = R_0$ .
- ⇒Os valores marcados por círculos são os valores de tensão e corrente já acumulados, após cada reflexão. Após cada reflexão, renova-se o valor da soma acumulada.
- ⇒ Finalmente deve-se observar que se  $\Gamma$ g (ou  $\Gamma$ 'g) fosse diferente de zero no exemplo dado, os diagramas da Fig. 7 se estenderiam indefinidamente (não terminariam em t = 2T).

### ⇒Funções de tensão e de corrente em relação a x (espaço) e t (tempo).

⇒ Os diagramas da Fig.7 constituem-se numa ferramenta simples e rápida para se determinar as funções e(x,t1) = i(x,t1) onde t1 é um instante qualquer de interesse. Obtém-se, neste caso, as chamadas distribuições de tensão e de corrente (função só de x) fazendo-se um corte horizontal em t = t1.

### ⇒ Funções de tensão e de corrente em relação a x (espaço) e t (tempo).

⇒ A Fig. 8.a ilustra a distribuição de tensão para t = 0,5 T . ⇒ A Fig. 8.b ilustra a distribuição de tensão para t = 1,5 T .



Fig. 8 - Instantâneos de tensão e corrente na linha para o exemplo dado.

### ⇒ Funções de tensão e de corrente em relação a x (espaço) e t (tempo).

⇒ Se por outro lado, for desejado as formas de onda e(x1,t) e i(x1,t)para uma posição x = x1 qualquer na linha, basta fazer cortes verticais em x = x1 nos diagramas da Fig.7.

 $\Rightarrow$  A Fig. 9.1 mostra a forma de onda de tensão para x = 0. A Fig. 9.b ilustra a corrente para x = 1 / 2.



Fig. 9 - Formas de ondas de tensão e de corrente para o exemplo dado.

### ⇒ Funções de tensão e de corrente em relação a x (espaço) e t (tempo).

 $\Rightarrow$  Finalmente, deve-se frisar aqui que os métodos de determinar tensões e correntes em função de x e de t vistos nas secções A.6 e A.7 são muito úteis para determinar a resposta da linha ideal a excitações em degrau. A resposta a um pulso retangular de amplitude A e duração  $t_0$ , por exemplo, pode ser encontrada fazendo no mesmo diagrama "zig-zag" a resposta para o degrau A u(t) bem como para o degrau atrasado - Au(t -  $t_0$ ). Uma ligeira reflexão mostra que a soma destes dois degraus conforma o pulso retangular desejado na entrada da linha. A acumulação das várias reflexões que ocorrem no diagrama fornece então as formas de tensão (e de corrente) em função de x e de t.

### Linhas de Regime Estacionário Senoidal

Introdução

⇒O estudo de linha de transmissão em regime permanente senoidal é muito importante por várias razões. A existência de uma quantidade imensa de linhas de potência que operam em 60Hz ou 50 Hz pelo mundo já seria uma razão bem forte para tal estudo.

 $\Rightarrow$ Há, na verdade, uma razão principal para o estudo de linhas de transmissão em regime permanente senoidal. Graças aos estudos de Fourier, Laplace e outros, qualquer sinal real no tempo *(periódico ou não)* tem um espectro em frequência.

- ⇒Os sinais periódicos são melhor tratados com o auxílio da Série de Fourier. Uma função periódica é decomposta num tom da frequência fundamental, bem como numa série infinita de tons senoidais harmônicos (múltiplos inteiros da fundamental) com suas respectivas amplitudes e fases.
- ⇒ Este fato dá origem ao chamado espectro de linhas ou de raias. Há dois espectros de maior interesse: o de amplitude e o de fase.
- ⇒Os sinais não periódicos, por outro lado, são melhor tratados através da Integral ou Transformada de Fourier.
- ⇒ A diferença básica neste caso é que os espectros de amplitude e de fase são agora cheios ou contínuos, e não mais só de raias, como no caso dos sinais periódicos.

- ⇒No momento, o que deve ficar claro é o fato de que pode-se encarar qualquer sinal real no tempo como tendo a sua contrapartida em frequência.
- ⇒Qualquer sinal real pode ser encarado como sendo uma soma de infinitos tons senoidais eternos (-∞ até +∞) de certas amplitudes e fases. Esta soma deve reproduzir o valor da função (do sinal) para qualquer instante (-∞ < t < ∞).</p>
- ⇒ Sendo assim, sabendo-se a resposta do sistema para o regime estacionário senoidal nas frequências de interesse, pode-se prever qual é a forma de onda do sinal na saída de tal sistema.

Solução Geral de tensão e Corrente na Linha em Regime Permanente Senoidal

⇒Foram vistas as equações diferenciais válidas numa linha genérica:

Equação 5 
$$\frac{\partial e}{\partial x} = -Ri - L\frac{\partial i}{\partial t}$$
 (A.1)

(A.2



- ⇒Nas equações anteriores a tensão "e", bem como a corrente "i" são funções de "x" e de "t".
- ⇒No regime estacionário senoidal as tensões e correntes são, como já visto em teoria de circuitos C.A., as projeções de vetores ou fasores girantes, ou seja:

$$e = \operatorname{Re}[E \cdot \exp(j\omega t)]$$
(A.3)  
$$i = \operatorname{Re}[I \cdot \exp(j\omega t)]$$
(A.4)

⇒Nas equações (A.3) e (A.4), E e I são as amplitudes da tensão e da corrente, respectivamente. Isto pode ser visualizado lembrando as identidades de Euler, e aplicando nas eqs. (A.3) e (A.4). Assim,

$$e = \operatorname{Re}\left[E \cdot \cos \omega t + jE \cdot \operatorname{sen} \omega t\right] = E \cdot \cos \omega t \qquad (A.5)$$

$$i = \operatorname{Re}[I \cdot \cos \omega t + jI \cdot \operatorname{sen}\omega t] = I \cdot \cos \omega t$$
 (A.6)

⇒Nas equações (A.3) e (A.4), as quantidades entre parênteses são conhecidas como fasores girantes.

- $\Rightarrow$  As quantidades conhecidas apenas como fasores são as quantidades *(reais ou complexas)* que se obtém dos fasores quando se faz t = 0, isto é, quando se omite a dependência temporal.
- ⇒A omissão do termo  $e^{j\omega t}$  é geralmente feita na teoria de circuitos alternados senoidais. Sendo assim, se o fasor tensão num ponto qualquer do circuito for obtido como sendo o número complexo *E* =  $E_0 \angle \theta_0$ , a correspondente onda de tensão real no domínio do tempo é obtida, fazendo:

$$E = \operatorname{Re}[E \cdot \exp(j\omega t)] = E_0 \cos(\omega t + \theta_0) \quad (A.7)$$

⇒Ao invés do fasor amplitude, muitas vezes, se fala no fasor amplitude eficaz. Neste caso, deve-se lembrar que:

Fasor efficaz = 
$$\frac{1}{\sqrt{2}}$$
 (fasor amplitude) (A.8)

⇒ Um dos aspectos mais interessantes da análise de Fourier reside no fato de que se soubermos a resposta de amplitude e de fase para *"todos"* os tons senoidais no intervalo das frequências *"de interesse",* ou seja, na banda de frequência do sinal de entrada, saberemos também como é a forma do sinal *"transiente"* da resposta temporal numa linha real.

- ⇒ Das equações (A.1) e (A.2) nota-se que há derivadas dos fasores de tensão e corrente tanto em relação a x como a t. Vamos colocar estas duas equações citadas numa forma mais adequada ao tratamento fasorial.
- $\Rightarrow$  Substituindo os fasores girantes de (A.3) e de (A.4) e (A.2), temse:

$$\frac{\partial}{\partial x} \left[ E \cdot \exp(j\omega t) \right] = -RI \, \exp(j\omega t) - j\omega LI \, \exp(j\omega t) \tag{A.9}$$

 $\sim$ 

$$\frac{\partial}{\partial x} \left[ I \cdot \exp(j\omega t) \right] = -GE \exp(j\omega t) - j\omega CE \exp(j\omega t) \quad (A.10)$$
⇒Omitindo a dependência temporal, as equações (A.9) e (A.10) podem ser escritas com derivadas totais:

$$\frac{dE}{dx} = -(R + j\omega L) \cdot I \qquad (A.11)$$

$$\frac{dI}{dx} = -(G + j\omega C) \cdot E \qquad (A.12)$$

 $\Rightarrow$  Define-se:

Impedância série da linha por unidade de comprimento

$$Z = R + j\omega L \tag{A.13}$$

Admitância paralela da linha por unidade de comprimento

$$Y = G + j\omega C \tag{A.14}$$



$$\frac{dE}{dx} = -ZI \qquad (A.15)$$

$$\frac{dI}{dx} = -YE \qquad (A.16)$$

 $\Rightarrow$  Vamos obter uma equação diferencial que contenha só a tensão fasorial *E*. Fazendo *d*(eq. A.15) / *dx*, tem-se:

$$\frac{d^2 E}{dx^2} = -Z\frac{dI}{dx}$$

 $\Rightarrow$  Substituindo (A.16) em (A.17), tem-se:

$$\frac{d^2 E}{dx^2} = (ZY)E$$

(A.18)

(A.17)

⇒ Tentemos uma solução de E para a equação (A.18). Deve ser uma função que, diferenciada duas vezes, reproduza a função original multiplicada por (ZY). Então, uma solução possível é:

$$E = C_1 \exp\left[-\sqrt{ZY} x\right] \tag{A.19}$$

 $\Rightarrow$  Onde C<sub>1</sub> é uma constante que tem a dimensão de tensão (volts). Entretanto, é necessário completar a solução de *E* com a possibilidade de haver reflexões na linha, de volta ao gerador. Vamos incluir:

$$E = C_2 \exp\left[\sqrt{ZY} x\right]$$
 (A.20)

 $\Rightarrow$  Portanto, a solução geral é do tipo:

$$E = C_1 \exp\left[-\sqrt{ZY} x\right] + C_2 \exp\left[\sqrt{ZY} x\right]$$

 $\Rightarrow$  Substituindo (A.21) em (A.15) pode-se achar a correspondente solução da corrente *I*, ou seja:

$$I = \frac{1}{\sqrt{Z/Y}} \left\{ C_1 \cdot \exp\left[-\sqrt{ZY} x\right] - C_2 \exp\left[\sqrt{ZY} x\right] \right\}$$
(A.2)

 $\Rightarrow$  A grandeza (complexa em geral) (Z/Y)<sup>1/2</sup> é a impedância característica  $Z_0$  da linha real, ou seja,

$$Z_0 = \sqrt{\frac{Z}{Y}} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \qquad [\Omega]$$

(A.23

⇒Observe que  $Z_0$  é dada em [Ω], e independente do comprimento da linha:  $Z_0$  é função de R,L,G,C e da frequência  $\omega = 2\pi f$ .

**Lembrete:** Para linha sem dissipação (ideal) R=G=0 e  $Z_0 = R_0 = (L/C)^{1/2}$  (real puro).

⇒ Por outro lado, observando as equações (A.21) e (A.22), nota-se que a grandeza é responsável pela propagação. Assim, definese:

$$\gamma = \sqrt{ZY} = \sqrt{(R + j\omega L) (G + j\omega C)} = \alpha + j\beta$$

onde:

 $\gamma$  = const. de propagação complexa ou função de propagação.

 $\alpha$  = const. de atenuação da linha dada em [nep/m]

 $\beta$  = const. de desvio de fase da linha dada em [rad/m].

Linha infinita, velocidade de fase e comprimento de onda

⇒É instrutivo neste ponto, analisar como ficam as soluções obtidas na secção anterior para o caso de uma linha de transmissão de comprimento infinito, ( $\ell = \infty$ ). A Fig. A.1 ilustra esta situação.



Figura A.1 – Linha Infinita.

- ⇒Nesta Figura,  $E_t$  e  $I_t$  são os fasores tensão e corrente na posição *(no lado da transmissão)*,  $E \in I$  são os fasores tensão e corrente num ponto qualquer, a uma distância x do gerador.
- ⇒ Como o termo de propagação  $\gamma$  envolve a atenuação  $\alpha$  da linha, que é uma quantidade positiva, é natural esperar que as soluções de tensão (ver eq.(A.21) e de corrente (ver eq. (A.22) tenham  $C_2 = 0$ .
- ⇒ A existência do 2º. termo nas equações citadas faria com que este termo tendesse a infinito, à medida que x → ∞. Isto seria impossível do ponto de vista de energia, uma vez que a linha real dissipa energia de fato. Portanto C<sub>2</sub> deve ser zero.

 $\Rightarrow$  A solução de tensão na linha é então:

$$E = C_1 \exp\left[-\sqrt{ZY} x\right] \tag{A.25}$$

- → (Propagação para a direita)
- ⇒ Calculemos  $C_1$  a partir de uma condição de contorno. Para x = 0, tem-se  $E = E_t$  (tensão na boca da linha). Então a eq. (A.25). Pode ser escrita como a seguir:

$$E_t = C_1 \exp[0] = C_1 \tag{A.26}$$

$$E = E_t \exp\left[-\sqrt{ZY} \mathbf{x}\right] = E_t \exp\left[-\gamma \mathbf{x}\right]$$
(A.27)

$$E = E_t \exp\left[-\left(\alpha + j\beta\right)x\right]$$
(A.28)

$$E = E_t \exp\left[-\alpha x\right] \exp\left[-j\beta x\right] = E_t \exp\left[-\alpha x\right] \angle ^{-\beta x}$$
(A.29)

⇒ De (A.29), nota-se que a fase de referência *(fase zero)* é colocada na tensão de entrada.  $E_t$  é real e é a amplitude de pico da onda *cos wt*. Se, por outro lado, a referência de fase for em  $E_g$ ,  $E_t$  seria complexa indicando alguma fase diferente de zero, dado que  $Z_g$  e/ou  $Z_0$  são complexas em geral.

⇒ A solução de corrente é obtida de maneira análoga da eq. (A.22), fazendo também  $C_1 = E_t e C_2 = 0$ . Obtém-se então:

$$I = \frac{E_t}{Z_0} \exp\left[-\alpha x\right] \exp\left[-j\beta x\right]$$
(A.30)

 $\Rightarrow$  Assim, se  $E_t$  é real (fase zero na tensão de entrada) tem-se:

$$I = \frac{E_t}{|Z_0|} \exp\left[-\alpha x\right] \exp\left[-j\beta x - j\theta_0\right]$$
(A.31)

$$I = \frac{E_t}{|Z_0|} \exp\left[-\alpha x\right] \, \left[ (\beta x + \theta o) \right] \tag{A.32}$$

Onde:  $Z_o = |Z_0| \langle \theta_0 = |Z_0| \exp[j\theta_0]$  é uma grandeza complexa geral

 $\Rightarrow$  Observe de (A.29) e (A.30) que:

$$\frac{E}{I} = Z_0 \quad (A.33) \quad \text{ou} \quad \frac{I}{E} = Y_0 \quad (A.34)$$
Onde:  $Y_0 = \frac{1}{Z_0} = |Y_0| \langle -\theta_0 = |Y_0| e^{-j\theta_0} \quad (A.35)$ 

⇒É importante, neste momento, lembrar que a eq. (A.29) dá a tensão na forma fasorial. Para achar a onda no tempo, faz-se:

$$e(x,t) = \operatorname{Re}\left[E_t \exp(-\alpha x) \exp(-j\beta x) \exp(j\omega t)\right] \quad (A.36)$$

$$e(x,t) = E_t \exp(-\alpha x) \cos(\omega t - \beta x)$$
(A.37)

⇒ Da eq. (A.37), nota-se que em cada ponto x qualquer da linha, há uma oscilação senoidal *(ou cossenoidal)* de tensão com uma amplitude, e com atraso de fase dado em radianos. Pode-se notar também que se  $\alpha \neq 0$  *(linha real)* a amplitude de oscilação cai com a distância x do gerador, de uma maneira exponencial.

- ⇒Note finalmente que, se  $\alpha = 0$  (*linha ideal*) a amplitude da oscilação não cai mais com x (é constante, e vale  $E_t$ ); há apenas um retardo de fase proporcional à distância x do gerador (- $\beta x$ ).
- ⇒ A forma de (A.37) é reconhecida como sendo a equação de uma onda progressiva (x e t aparecem conjuntamente no argumento do cosseno). A ideia de uma onda senoidal progressiva é melhor visualizada se usarmos a ideia do observador montado na onda. O argumento é então uma constante, ou seja :

$$\omega t - \beta x = K \tag{A.38}$$

⇒Nota-se que (A.37) descreve uma perturbação senoidal que viaja para a direita (sentido de x crescente), uma vez que se t aumenta (ver eq. A.38), x tem que aumentar, para manter a constante K. A velocidade desta perturbação é obtida de (A.38), diferenciando em relação ao tempo, ou seja:

$$\omega - \beta \, \frac{dx}{dt} = 0 \tag{A.39}$$

$$v_f = \frac{dx}{dt} = \frac{\omega}{\beta}$$

- $\Rightarrow$  A equação (A.40) define a velocidade de fase  $v_f$  da perturbação senoidal.
- ⇒ Se a linha não tem perdas (R = G = 0) a função de propagação γ (ver eq. A.24) fornece:

$$\Upsilon = \sqrt{(j\omega L) (j\omega C)} = j\omega \sqrt{LC} = \alpha + j\beta \qquad (A.41)$$

Portanto:

$$\alpha = 0 \quad \beta = \omega \sqrt{LC} \tag{A.42}$$

 $\Rightarrow$  Assim, substituindo o valor obtido para  $\beta$  de (A.42) em (A.40), obtém-se:

$$v_f = \frac{\omega}{\omega\sqrt{LC}} = \frac{1}{\sqrt{LC}} \left[ \text{m/s} \right]$$
(A.41)

- ⇒Assim, conclui-se que para linha ideal a velocidade de fase é independente da frequência (ver (A.43). Isto é uma consequência de que, na linha ideal, β é diretamente proporcional à frequência (ver (A.42)).
- ⇒Para uma linha real, de modo geral não é diretamente proporcional à frequência. Por consequência, a velocidade da fase não é uma constante. Este fato é o responsável pelo fenômeno da dispersão em linhas.

- ⇒As várias componentes senoidais (pense no espectro de um pulso injetado na linha) viajarão com velocidades de fase diferentes. Algumas chegarão antes das outras. A composição de todas elas na saída da linha não mais conformará o mesmo pulso injetado na entrada, e ele estará então distorcido (ou espalhado no tempo). Este tipo de distorção é causado pela não linearidade da constante de desvio da fase. É a chamada distorção de fase.
- ⇒Um outro tipo de distorção é a chamada distorção de amplitude. Esta aparece devido ao fato de que a constante de atenuação não é, de fato, constante com a frequência. O valor de α é obtido através da relação (A.24).

- ⇒O fato de α variar com a frequência faz com que as várias componentes senoidais do pulso já referido anteriormente sofram atenuações diferentes. Deste modo, elas também não podem mais conformar o pulso que foi injetado na entrada da linha. Assim, ele aparece distorcido na saída. É então o caso de distorção de amplitude.
- ⇒ Para a corrente dada em (A.30), valem idênticas considerações àquelas já feitas para a tensão. É preciso apenas notar que, se  $Z_0$  for real, *E* e *I* estão em fase para qualquer ponto x da linha. Se  $Z_0$  não é real então, a corrente *I* está atrasada de um ângulo  $\theta_0$  em relação à tensão no mesmo ponto x da linha (ver eq. A.32).

 $\Rightarrow$  Vamos definir agora o comprimento de onda  $\lambda$  como a menor distância entre dois pontos de mesma fase, ou seja:

$$\beta x = \beta \lambda = 2\pi \text{ radianos}$$
(A.44)  
$$x = \lambda$$

$$\lambda = \frac{2\pi}{\beta} \text{ ou } \beta = \frac{2\pi}{\lambda}$$

⇒Das relações (A.45) e (A.40), obtém-se várias identidades de interesse

$$\lambda = \frac{2\pi}{\omega} v_f = \frac{2\pi}{\frac{2\pi}{T}} v_f = \frac{v_f}{f} = T v_f \quad (A.46)$$

Onde f é a frequência cíclica dada em Hz, T [s] é o período da oscilação

Linha finita bem terminada

⇒Note que, na Fig. A.1, se a linha for seccionada num valor  $x = \ell$ [m] mas, ao mesmo tempo, providenciarmos uma impedância de carga  $Z_c = Z_0$  para terminar a linha de comprimento  $\ell$ , as soluções já obtidas para *E* e *I* para  $0 \le x \le \ell$  na secção anterior devem se conservar. Linha finita bem terminada

⇒Isto se explica pelo fato de que os fasores *E* e *I* estão relacionados na linha através de  $E/I = Z_0$ , para qualquer *x*. Esta relação continua válida também em  $x = \ell$ , por construção. Assim o trecho de linha de comprimento  $\ell$  não pode *"perceber"* que a linha foi seccionada.

⇒As soluções dos fasores *E* e *I* numa linha finita terminada com impedância de carga  $Z_c = Z_0$  [Ω] são então aquelas já obtidas nas eqs. (A.29) e (A.30). A Fig. A.2 ilustra a posição dos fasores de tensão na linha, em um comprimento de onda.



Fig. A. 2 – Fasores de tensão para x = 0 (no eixo real), x =  $\lambda/8$ , x =  $\lambda/2$  e x =  $3\lambda/4$ .

⇒Note que a ponta dos fasores descreve uma espiral logarítmica decrescente à medida que se aumenta x, devido ao termo de atenuação exp(-αx). ⇒As distribuições de tensão ao longo da linha, para vários instantes sucessivos, podem ser visualizadas na Fig. A.3.



Fig. A.3.-Instantâneos de tensão na linha real terminada com  $Z_c = Z_0$ 

⇒Note da Fig. A.3 que as amplitudes das oscilações senoidais na linha decrescem de um modo exponencial, devido à presença do termo de atenuação na solução de (A.29). Reflexões na Linha e coeficiente de reflexão medido a partir da carga:

$$E = E^+ + E^- \tag{A.47}$$

onde o fasor *E* total é a soma do fasor incidente  $E^+$  e do fasor refletido  $E^-$ .

$$I = I^+ + I^- \tag{A.48}$$

A corrente é também da mesma forma.

A comparação de (A.47) e (A.48) com as eqs. (A.21) e (A.22) mostra que :

$$I^{+} = \frac{E^{+}}{Z_{0}}$$
(A.49)  
$$I^{-} = \frac{-E^{-}}{Z_{0}}$$
(A.50)

A determinação das constantes *(que têm dimensão de tensão)* nas soluções já obtidas nas eqs. (A.21) e (A.22) pode ser feita de várias maneiras. É útil, por exemplo, expressar as quantidades em função das grandezas terminais (ver Fig. A.4).



## Fig. A.4 – Diagrama contendo a notação usada.

Vamos substituir  $E = I_r Z_r$  e  $I = I_r$  em  $x = \ell$  nas eqs. (A.21) e (A.22). Obtém-se então :

$$I_r Z_r = C_1 \exp(-\gamma \ell) + C_2 \exp(\gamma \ell)$$
 (A.51)

$$I_r Z_0 = C_1 \exp(-\gamma \ell) - C_2 \exp(\gamma \ell)$$
 (A.52)

Somando (A.51) e (A.52), obtém-se  $C_1$  dado por :

$$C_1 = \frac{I_r}{2} \left( Z_r + Z_0 \right) \exp(\gamma \ell) \tag{A.53}$$

Subtraindo (A.52) e (A.51), obtém-se  $C_2$  dado por :

$$C_2 = \frac{I_r}{2} \left( Z_r - Z_0 \right) \exp\left(-\gamma \ell \right) \tag{A.54}$$

Assim, substituindo estes valores em (A.21) e (A.22), *E* e *I*, respectivamente, obtém-se :

$$E = \frac{I_r}{2} \left\{ \left( Z_r + Z_0 \right) \exp\left[ \gamma(\ell - x) \right] + \left( Z_r - Z_0 \right) \exp\left[ \gamma(x - \ell) \right] \right\}$$
(A.55)

$$I = \frac{I_r}{2Z_0} \{ (Z_r + Z_0) \exp[\gamma(\ell - x)] - (Z_r - Z_0) \exp[\gamma(x - \ell)] \}$$
(A.56)

Se quisermos referir a distância a partir da carga, pode-se usar a relação d = l - x (ver Fig. A.4), temos então :

$$E = \frac{I_r}{2} \{ (Z_r + Z_0) \exp(\gamma d) + (Z_r - Z_0) \exp(-\gamma d) \}$$
(A.57)  
$$I = \frac{I_r}{2Z_0} \{ (Z_r + Z_0) \exp(\gamma d) - (Z_r - Z_0) \exp(-\gamma d) \}$$
(A.58)

A relação entre a onda de tensão refletida pela incidente resulta no coeficiente de reflexão de tensão, ou seja:

$$\Gamma = \frac{E^{-}}{E^{+}} = \frac{Z_r - Z_0}{Z_r + Z_0} \exp(-2\gamma d)$$
(A.59)  
$$\Gamma = \Gamma_r \exp(-2\alpha d) \exp(-j2\beta d)$$
(A.60)

Sendo

$$\Gamma_r = \left( Z_r - Z_0 \right) / \left( Z_r + Z_0 \right) \tag{A.61}$$

o coeficiente de reflexão de tensão na posição da carga ou recepção. Enquanto o coeficiente de reflexão de corrente é dado por:

$$\Gamma' = -\Gamma = \frac{Z_0 - Z_r}{Z_r + Z_0} \exp(-2\alpha d) \exp(-j2\beta d)$$
 (A.62)

A impedância complexa num ponto da linha é obtida da divisão do fasor total *E* pelo total *I*. assim, usando as eqs. (A.57) e (A.58), obtém-se:

$$Z = \frac{E}{I} = Z_0 \frac{\left(Z_r + Z_0\right) \exp \gamma d + \left(Z_r - Z_0\right) \exp(-\gamma d)}{\left(Z_r + Z_0\right) \exp \gamma d - \left(Z_r - Z_0\right) \exp(-\gamma d)}$$
(A.63)

Ou então:

$$Z = Z_0 \cdot \frac{Z_r[\exp(\gamma d) + \exp(-\gamma d)] + Z_0[\exp(\gamma d) - \exp(-\gamma d)]}{Z_0[\exp(\gamma d) + \exp(-\gamma d)] + Z_r[\exp(\gamma d) - \exp(-\gamma d)]}$$

(A.64)

Por meio da relação trigonométrica

$$\frac{\exp(\gamma d) - \exp(-\gamma d)}{\exp(\gamma d) + \exp(-\gamma d)} = tgh(\gamma d)$$
(A.65)

aplicada à (A.64), obtém-se:

$$Z = Z_0 \frac{Z_r + Z_0 tgh(\gamma d)}{Z_0 + Z_r tgh(\gamma d)}$$
(A.66)

Se  $Z_r = Z_0$  a impedância Z em qualquer ponto da linha é também igual a  $Z_0$ .

Se eventualmente Zr = 0, então (A.66) é descrita como:

$$Z = Z_0 \frac{Z_0 tgh(\gamma d)}{Z_0} = Z_0 tgh(\gamma d)$$
(A.67)

No caso de uma linha ideal, sendo  $Z_r = R_0 e \gamma d = j\beta d$ , tem-se :

$$Z = R_0 tgh(j\beta d) \tag{A.68}$$

| - |  |
|---|--|
|   |  |
|   |  |
| - |  |

$$tgh(jx) = j tg x \tag{A.69}$$

Sendo assim, obtém-se para a linha sem perdas:

$$Z = jR_0 \cdot tg \ (\beta d) \tag{A.70}$$
O módulo da impedância num ponto qualquer da linha ideal com  $Z_r = 0$  varia então segundo uma tangentóide:



Fig. A.5 – Reatância produzida por uma linha ideal em curto.