
Linhas de Regime Estacionário Senoidal



Seção infinitesimal de uma linha de transmissão, onde no 
delta x o tempo não varia.... equações de circuito.



O modelo assumido fica mais próximo da situação real à medida que 

Δx tende a zero. Aplicando o limite na eq.(4), para Δx → 0, tem-se:

É importante observar que o 2° membro de (4) dá origem ao negativo 

da derivada parcial da tensão e(x,t) na linha em relação a x.

(5)

O MODELO ESTÁ CORRETO!!



Reescrevendo a eq.(3) numa forma mais apropriada e dividindo por 

Δx, obtém-se:  

Fazendo o limite da equação (6) quando Δx → 0, tem-se:

(6)

(7)



A equação (5) 

indica que há queda de tensão com a distância x na  linha 

pela passagem da corrente nos elementos R e L em série 

na linha.

A equação (7).       

mostra que há queda de corrente com a distância x na 

linha devido à existência de tensão nos elementos 

paralelos (de fuga) da linha, ou seja G e C. São correntes 

que retornam antes do sinal chegar no fim da linha.



Linha não dissipativa ideal ou sem perdas

Nessa condição temos: R = G = 0

Neste caso, as eqs. (11) e (12) se simplificam para:

(13)

(14)



Linha não dissipativa ideal ou sem perdas

Verifiquemos que uma solução para a eq. (13) é:

Onde f1 é qualquer função unívoca do argumento  

Além disso f1 tem dimensão de tensão (dada em volts, no sistema 

internacional).
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Para efeito de visualização do fenômeno de onda, suponha um 

caso genérico para f1, como diagramado abaixo:

onde                         velocidade de propagação da onda

               Perturbação de tensão viajando na linha ideal.

  /1 == LCv



Linha não dissipativa ideal ou sem perdas

Suponha que haja um observador montado na onda, no ponto 

marcado P. Ele deve ver a  perturbação (onda) parada. O 

argumento                    permanece constante para ele, ou seja:

Fazendo-se a derivada em relação ao tempo da eq.(20) tem-se:

xLCt −

KxLCt    =− (20)

0      1 =−
dt

dx
LC

 smLCv
dt

dx
/ /1     == (21)

velocidade de propagação da onda



Linha não dissipativa ideal ou sem perdas

Como num problema de causa e efeito observa-se que 

associada à onda de tensão expressa na eq. (15), deve 

existir uma correspondente onda de corrente. Tentemos 

uma correspondente onda de corrente para a direita como 

sendo:

onde Z0 deve ser determinada.
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Linha não dissipativa ideal ou sem perdas

Substituindo (22) na eq. (5)  (com R = 0) tem-se:
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Linha não dissipativa ideal ou sem perdas

Para que (23) seja verdadeira, é necessário que a constante 

arbitrada Z0 verifique a relação:                           ou

Ou seja,

A grandeza Z0 é conhecida como a impedância característica da 

linha sem perdas, e é dada em Ω quando L é dado em H/m, e C em 

F/m. Para a linha sem perdas, como se nota de (24), Z0 é um 

número puramente real, ou seja, Z0 = R0, pois L e C são sempre 

números reais positivos. Desta forma a expressão (22) é de fato a

solução de corrente associada à solução de tensão expressa na

eq.(15).

(24)
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Reflexões na linha sem perda. Coeficientes de 

                         reflexão de tensão e de corrente

manipulando as relações , tem-se:

Dividindo o numerador e o denominador por       e rearranjando os 

termos, obtém-se :
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Reflexões na linha sem perda. Coeficientes de 

                          reflexão de tensão e de corrente

A relação            é conhecida como coeficiente de reflexão de 

tensão           na posição da carga, ou seja:

Na eq. (36) nota-se que o único  valor de Rc que evita as reflexões é 

Rc = Z0 = R0 [Ω]. Neste caso,               e 

(36)
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Γ𝑐 = 0 linha casada
 Γ𝑐 = 1 linha aberta

 Γ𝑐 = -1 linha em curto



Linhas de Regime 

Estacionário 

Senoidal



Introdução

O estudo de linha de transmissão em regime permanente

senoidal é muito importante por várias razões. A 

existência de uma quantidade imensa de linhas de 

potência que operam em 60Hz ou 50 Hz pelo mundo já 

seria uma razão bem forte para tal estudo.

Há, na verdade, uma razão principal para o estudo de 

linhas de transmissão em regime permanente senoidal.

Graças aos estudos de Fourier, Laplace e outros, qualquer

sinal real no tempo (periódico ou não) tem um espectro

em frequência.



Os sinais periódicos são melhor tratados com o auxílio da Série

de Fourier. Uma função periódica é decomposta num tom da 

frequência fundamental, bem como numa série infinita de 

tons senoidais harmônicos (múltiplos inteiros da 

fundamental) com suas respectivas amplitudes e fases.

Este fato dá origem ao chamado espectro de linhas ou de raias. 

Há dois espectros de maior interesse: o de amplitude e o de 

fase. Os sinais não periódicos, por outro lado, são melhor 

tratados através da Integral ou Transformada de Fourier.

A diferença básica neste caso é que os espectros de 

amplitude e de fase são agora cheios ou contínuos, e não 

mais só de raias, como no caso dos sinais periódicos.



No momento, o que deve ficar claro é o fato de que pode-se 

encarar qualquer sinal real no tempo como tendo a sua 

contrapartida em frequência.

Qualquer sinal real pode ser encarado como sendo uma soma 

de infinitos tons senoidais eternos (-∞ até +∞) de certas 

amplitudes e fases. Esta soma deve reproduzir o valor da 

função (do sinal) para qualquer instante (-∞ < t < ∞).



A figura mostra um exemplo de como se forma 

uma onda complexa (no caso uma onda

quadrada simétrica) e o seu respectivo espectro. 

A forma de onda resultante (em amarelo) é o 

somatório a todo instante dos termos (em azul) :



Relação entre forma de onda e espectro

Forma tridimensional em perspectiva para ser 

mais exato, para a onda quadrada da figura

anterior 



Solução Geral de tensão e Corrente na Linha em 

                        Regime Permanente Senoidal

Foram vistas  as equações diferenciais válidas numa linha genérica:

                                                                                                      (A.1)

Eq. 5 

Eq. 7 

                                                                                                      (A.2)



Nas equações anteriores a tensão “e”, bem como a 

               corrente “i”  são funções de “x” e de “t”.

No regime estacionário senoidal as tensões e correntes são, como já 

visto em teoria de circuitos C.A., as projeções de vetores ou fasores

girantes, ou seja: 

(A.3)

O fasor G é o vetor 

girante 

(A.4)Nas equações (A.3) e (A.4), as quantidades entre 

parênteses são conhecidas como fasores girantes.



Nas equações (A.3) e (A.4), E e I são as amplitudes da

tensão e da corrente, respectivamente. Isto pode ser visualizado 

lembrando as identidades de Euler, e aplicando nas eqs.  (A.3) e 

(A.4). Assim,

(A.5)

(A.6)



As quantidades conhecidas apenas como fasores 

são as quantidades (reais ou complexas) que se obtém dos fasores 

quando se faz t = 0, isto é, quando se omite a dependência 

temporal.

A  omissão do termo ejωt é geralmente feita na teoria de 

circuitos alternados senoidais. Sendo assim, se o fasor tensão 

num ponto qualquer do circuito for obtido como sendo o 

número complexo E = E0   θ0, a correspondente onda de tensão 

real no domínio do tempo é obtida, fazendo:

(A.7)



Ao invés do fasor amplitude, muitas vezes, se 

fala no fasor amplitude eficaz. Neste caso, deve-se lembrar que:

(A.8)

Um dos aspectos mais interessantes da análise de Fourier reside

no fato de que se soubermos a resposta de amplitude e de fase

para "todos" os tons senoidais no intervalo das frequências “de

interesse", ou seja, na banda de frequência do sinal de entrada, 

saberemos também como é a forma do sinal "transiente" da 

resposta temporal numa linha real.



Das equações (A.1) e (A.2) nota-se que há derivadas dos 

fasores de tensão e corrente tanto em relação a x como a t. Vamos 

colocar estas duas equações citadas numa forma mais adequada 

ao tratamento fasorial.

Substituindo os fasores girantes de (A.3) e de (A.4) e (A.2), tem-se:

(A.9)

(A.10)



Omitindo a dependência temporal, as equações 

 (A.9) e (A.10) podem ser escritas com derivadas totais:

(A.11)

(A.12)



Define-se:

Impedância série da linha por unidade de comprimento 

(A.13)

 Admitância paralela da linha por unidade de comprimento

(A.14)



Portanto:

(A.15)

(A.16)



Vamos obter uma equação diferencial que contenha só a tensão 

fasorial  E. Fazendo  d(eq. A.15) / dx, tem-se:

(A.17)

Substituindo (A.16) em (A.17), tem-se:

(A.18)



Tentemos uma solução de E para a equação (A.18). 

Deve ser uma função que, diferenciada duas vezes, reproduza a

função original multiplicada por (ZY). 

uma solução possível é:

(A.19)

Onde C1 é uma constante que tem a dimensão de tensão (volts).  

Entretanto, é necessário completar a solução de E com a 

possibilidade de haver reflexões na linha, de volta ao gerador. 

Vamos incluir:

(A.20)



Portanto, a solução geral é do tipo:

(A.21)

   Substituindo (A.21) em (A.15) pode-se  achar a correspondente 

solução da corrente I, ou seja:

(A.22)



A grandeza (complexa em geral) (Z/Y)1/2 é a impedância 

característica Z0 da linha real, ou seja,

(A.23)

Observe que Z0 é dada em [Ω], e independente do comprimento da

linha: Z0 é função de R,L,G,C e da frequência ω = 2πf.

Lembrete:   Para linha sem dissipação (ideal) R=G=0 e Z0 = R0 = 

(L/C)1/2 (real puro).



independente do 

comprimento da linha







CABO COAXIAL







observando as equações (A.21) e (A.22), nota-se que a grandeza  é

responsável pela propagação. Assim, define-se:

(A.24)

onde:

          γ =    const. de propagação complexa ou função de 

propagação.

          α =   const. de atenuação da linha dada em [nep/m]

          β =   const. de desvio de fase da linha dada em [rad/m].



Linha infinita, velocidade de fase e comprimento de onda

É instrutivo neste ponto, analisar como ficam as soluções obtidas na 

secção anterior para o caso de uma linha de transmissão de 

comprimento infinito, (l = ∞). A Fig. A.1 ilustra esta situação.

Figura A.1 – Linha Infinita.

SEM REFLEXÃO



Nesta Figura, Et e It são os fasores  tensão e corrente na posição  

(no lado da transmissão), E e I são os fasores tensão e corrente num 

ponto qualquer, a uma distância x do gerador.

Como o termo de propagação γ envolve a atenuação α da linha, que 

é uma quantidade positiva, é natural esperar que as soluções  de 

tensão (ver eq.(A.21)  e  de  corrente (ver eq. (A.22) tenham C2 = 0. 

A existência do 2º. termo nas equações citadas faria com que este 

termo tendesse a infinito, à medida que x → ∞. Isto seria   impossível 

do ponto de vista de energia, uma vez que a linha real dissipa energia 

de fato. Portanto C2 deve ser zero.



A solução de tensão na linha é então:

(A.25)

→  (Propagação para a direita)

Calculemos C1 a partir de uma condição de contorno. Para x = 0, 

tem-se E = Et (tensão na boca da linha). Então a eq. (A.25). Pode 

ser escrita como a seguir:



Para x = 0

De (A.29), nota-se que a fase de referência (fase zero) é colocada 

na tensão de entrada. Et é real e é a amplitude de pico da onda cos 

ωt. Se, por outro lado, a referência de fase for em Eg, Et seria 

complexa indicando alguma fase diferente de zero, dado que Zg 

e/ou Z0 são complexas em geral.



A solução de corrente é obtida de maneira análoga da eq. (A.22), 

fazendo também C1 = Et e C2 = 0. Obtém-se então:

(A.30)

Assim, se Et é real (fase zero na tensão de entrada) tem-se:

(A.31)



É importante, neste momento, lembrar que a eq. (A.29) dá a tensão 

na forma fasorial. Para achar a onda no tempo multiplica por ejωt :

(A.36)

(A.37)

Da eq. (A.37), nota-se que em cada ponto x qualquer da linha, há 

uma oscilação senoidal (ou cossenoidal) de tensão com uma 

amplitude, e com atraso de fase dado em radianos. Pode-se notar 

também que se α ≠ 0 (linha real) a amplitude de oscilação cai com a

distância x do gerador, de uma maneira exponencial.



Note finalmente que, se α = 0 (linha ideal) a amplitude da oscilação 

não cai mais com x (é constante, e vale Et); há apenas um atraso de 

fase proporcional  à distância x do gerador (-βx).

A forma de (A.37) é reconhecida como sendo a equação de uma 

onda progressiva (x e t aparecem conjuntamente no argumento do 

cosseno).  A ideia de uma onda senoidal progressiva é melhor 

visualizada se usarmos a ideia do observador montado na onda. O 

argumento é então uma constante, ou seja :

(A.38)



Nota-se que (A.37) descreve uma perturbação senoidal que viaja 

para a direita (sentido de x crescente), uma vez que se t aumenta 

(ver eq. A.38), x tem que aumentar, para manter a constante K. A 

velocidade desta perturbação é obtida de (A.38), diferenciando em 

relação ao tempo, ou seja:

(A.39)

(A.40)



A equação (A.40) define a velocidade de fase vf da perturbação

senoidal.

Se a linha não tem perdas (R = G = 0) a função de propagação γ 

(ver eq. A.24) fornece:

(A.41)

Portanto:

(A.42)



VALORES MAIS PRECISOS





Assim, substituindo o valor obtido para β de (A.42) em (A.40), 

obtém-se:

(A.43)

Assim, conclui-se que para linha ideal a velocidade de fase é 

independente da frequência (ver (A.43). Isto é uma consequência 

de que, na linha ideal, β é diretamente proporcional à frequência

(ver (A.42)).

Para uma linha real, de modo geral  não é diretamente proporcional 

à frequência. Por consequência, a velocidade da fase não é uma

constante. Este fato é o responsável pelo fenômeno da dispersão 

em linhas.



As várias componentes senoidais (pense no espectro de um pulso 

injetado na linha) viajarão com velocidades de fase diferentes. 

Algumas chegarão antes das outras. A composição de todas elas na 

saída da linha não mais conformará o mesmo pulso injetado na 

entrada, e ele estará então distorcido (ou espalhado no tempo). 

Este tipo de distorção é causado pela não linearidade da constante 

de desvio da fase. É a chamada distorção de fase.

Um  outro tipo de distorção é a chamada distorção de amplitude. 

Esta aparece devido ao fato de que a constante de atenuação não 

é, de fato, constante com a frequência. O valor de α é obtido 

através da relação (A.24), é aproximadamente igual a raiz quadrada

da frequência. 

DISCUSSÃO



O fato de α variar com a frequência faz com que as várias 

componentes senoidais do pulso já referido anteriormente sofram 

atenuações diferentes. Deste modo, elas também não podem mais 

conformar o pulso que foi injetado na entrada da linha. Assim, ele 

aparece distorcido na saída. É então o caso de distorção de

amplitude.

Para a corrente dada em (A.30), valem idênticas considerações 

àquelas já feitas para a tensão. É preciso apenas notar que, se Z0 

for real, E e I estão em fase para qualquer ponto x da linha.  Se Z0 

não é real então, a corrente I está atrasada de um ângulo θ0 em 

relação à tensão no mesmo ponto x da linha (ver eq.  A.32).



Vamos definir agora o comprimento de onda λ como a menor 

distância entre dois pontos de mesma fase, ou seja:

(A.44)

(A.45)



Das relações (A.45) e (A.40), obtém-se várias identidades de 

interesse

(A.46)

Onde f é a frequência cíclica dada em Hz, T [s] é o período da 

oscilação. 



Linha finita bem terminada

Note que, na Fig. A.1, se a linha for seccionada num valor x = l [m] 

mas, ao mesmo tempo, providenciarmos uma impedância de carga

Zc = Z0 para terminar a linha de comprimento l, as soluções já 

obtidas para E e I para 0 ≤ x ≤ l na secção anterior devem se

conservar.



Linha finita bem terminada

 Isto se explica pelo fato de que os fasores E e I estão 

relacionados na linha através de E / I = Z0 , para qualquer x . Esta 

relação continua válida também em x = l , por construção. Assim

o trecho de linha de comprimento l não pode “perceber” que a

linha foi seccionada.

As soluções dos fasores E e I numa linha finita terminada com 

impedância de carga Zc = Z0 [Ω] são então aquelas já obtidas nas 

eqs. (A.29) e (A.30). A Fig. A.2 ilustra a posição dos fasores de 

tensão na linha, em um comprimento de onda.



Fig. A. 2 – Fasores de tensão para x = 0 (no eixo real),

x = λ/8, x = λ/2 e x = 3λ/4.

Note que a ponta dos fasores descreve uma espiral logarítmica 

decrescente à medida que se aumenta x, devido ao termo de 

atenuação exp(-αx).



As distribuições de tensão ao longo da linha, para vários instantes 

sucessivos, podem ser visualizadas na Fig. A.3.

Fig. A.3.-Instantâneos de tensão na linha real terminada com Zc = Z0

Note da Fig. A.3 que as amplitudes das oscilações senoidais na 

linha decrescem de um modo exponencial, devido à presença do 

termo de atenuação na solução de  (A.29). 







−+ += EEE   

Reflexões na Linha e coeficiente de reflexão medido a partir da 

carga:

onde  o fasor E total é a soma do fasor incidente E+ e do fasor 

refletido E- .

−+ += I  II

A corrente é também da mesma forma.

(A.47)

(A.48)



A comparação de  (A.47) e (A.48) com as eqs. (A.21) e   (A.22)  

mostra que :

A determinação  das constantes  (que têm dimensão de tensão)  

nas soluções já obtidas nas eqs. (A.21) e   (A.22) pode ser feita de 

várias maneiras. É útil, por exemplo, expressar as quantidades   em 

função das grandezas terminais  (ver Fig. A.4).

0Z

E
I

+
+ = (A.49)

0Z

E
I

−
− −
= (A.50)



Fig. A.4 – Diagrama contendo a notação usada.

Vamos substituir E = IrZr  e I = Ir  em x = ℓ nas eqs. (A.21) e   (A.22). 

Obtém-se então :

1 2 exp( )   exp( )r rI Z C C = − +

0 1 2 exp( ) -  exp( )rI Z C C = −

(A.51)

(A.52)



Somando (A.51) e (A.52), obtém-se C1  dado por :

(A.53)

(A.54)

( ) ( )1 0 exp
2

r
r

I
C Z Z = +

Subtraindo (A.52) e (A.51), obtém-se C2  dado por :

( ) ( )2 0 exp
2

r
r

I
C Z Z = − −

Assim, substituindo estes valores em (A.21) e (A.22), E e I, respectivamente, 

obtém-se :

( )   ( )   0 r 0exp ( )  + Z ( )
2

r
r

I
E Z Z x Z exp x = + − − −

    0 0
0

( ) exp ( ) ( )exp (
2

r
r r

I
I Z Z x Z Z x

Z
 = + − − − −

(A.55)

(A.56)

(A.21) 



Se quisermos referir a distância a partir da carga, pode-se usar a 

relação d = ℓ - x (ver Fig. A.4), temos então :

(A.57)

(A.58)

(A.59)

(A.60)

( ) ( ) 0 r 0exp( ) + Z ( )
2

r
r

I
E Z Z d Z exp d = + − −

 0 0
0

( ) exp( ) ( )exp( )
2

r
r r

I
I Z Z d Z Z d

Z
 = + − − −

A  relação entre a onda de tensão refletida pela incidente resulta no 

coeficiente de reflexão de tensão, ou seja:

0
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Z ZE
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Sendo

(A.61)

(A.62)

o coeficiente de reflexão de tensão na posição da carga ou 

recepção. Enquanto o coeficiente de reflexão de corrente é dado 

por:

( ) ( )0 0/r r rZ Z Z Z = − +

0

0

' exp( 2 )exp( 2 )r

r

Z Z
d j d

Z Z
 

−
 = − = − −

+



(A.63)

A impedância complexa num ponto da linha é obtida da divisão do 

fasor total  E pelo total  I . assim, usando as eqs. (A.57) e  (A.58), 

obtém-se:

( ) ( )
( ) ( )

0 0
0

0 0
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r r
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Z Z
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Ou então:

0
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0
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. r
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Z d d Z d d
Z Z

Z d d Z d d

   

   

+ − + − −
=

+ − + − −
(A.64)

Qualquer ponto da linha

( ) ( ) 0 r 0exp( ) + Z ( )
2

r
r

I
E Z Z d Z exp d = + − −

 0 0
0

( ) exp( ) ( )exp( )
2

r
r r

I
I Z Z d Z Z d

Z
 = + − − −



(A.65)

a relação trigonométrica 

aplicada à (A.64), obtém-se:

(A.66)

exp( ) - exp( )
 = ( )

exp( ) + exp( )

d d
tgh d

d d

 


 

−

−

0
0

0

 ( ) 

 ( )  

r

r

Z Z tgh d
Z Z

Z Z tgh d





+
=

+

Se Zr = Z0 a impedância Z em qualquer 

ponto da linha é também igual a Z0.

0
0

0

[exp( ) exp( )] [exp( ) exp( )]
   

[exp( ) exp( )] [exp( ) exp( )]
. r

r

Z d d Z d d
Z Z

Z d d Z d d

   

   

+ − + − −
=

+ − + − −



LINHA SEM PERDAS

0
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 ( ) 

 ( )  

r

r

Z Z tgh d
Z Z

Z Z tgh d





+
=

+



onda estacionária



Relação de onda estacionária 

(ROE)
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𝑅𝑂𝐸 =
1 + Γ𝐿

1 − Γ𝐿

◼ Relação ou Razão 
de Onda 

Estacionária (SWR):

=
𝑉𝑚á𝑥

𝑉𝑚í𝑛



LINHA CURTA



LINHA LONGA









Casamento de Impedância. (linha sem perdas)

Várias técnicas podem ser usadas para eliminar 

reflexões quando a impedância característica da linha e 

a impedância da carga são incompatíveis.

Técnicas de casamento de impedância podem ser 

projetadas para serem eficazes para uma frequência 

específica de operação (técnicas de banda estreita) ou 

para um determinado espectro de frequência (técnicas 

de banda larga). Um método de casamento de 

impedância envolve a inserção de um transformador de 

impedância entre a linha e a carga



O transformador de impedância é posicionado de modo que esteja 

conectado a uma impedância real ZA. Isto é sempre possível se 

um local de padrão de onda estacionária de tensão máxima ou 

mínima é selecionado.



Consideramos a impedancia de uma linha L=𝜆/4

Z01=Z0



Observe que se a carga for real, o padrão de onda estacionária de tensão na carga é 

máxima quando ZR > Z01 ou mínima quando ZR < Z01 . O transformador pode ser 

conectado diretamente no local da carga ou em um distância da carga correspondente 

a um múltiplo de 𝜆/4



EXEMPLO – CARGA REAL



IMPEDÂNCIA COMPLEXA

Transformador na máxima tensão

Transformador na mínima tensão

(Z02)
2/ZA =Z01



STUB LINE





LINHAS SEM DISTORÇÃO

Condição de Heaviside

𝑅

𝐿
= 

𝐺

𝐶

a) Diminuir R – aumento da bitola – custo

b) Diminuir C – aumentar a distancia dos condutores

c) Aumentar G – aumenta a atenuação

d) Aumentar L  - Pupinização 
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