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Linhas de Regime Estacionario Senoidal



Secao infinitesimal de uma linha de transmissao, onde no
delta x o tempo néo varia.... equacoes de circuito.
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Fig.1 - Linha de transmissio uniforme.
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O modelo assumido fica mais proximo da situacao real a medida que

Ax tende a zero. Aplicando o limite na eq.(4), para Ax - 0, tem-se:

-

R+L = | i(xd) = -
&t |

-

2
— el(x.7)
cx

(5)

E importante observar que o 2° membro de (4) d& origem ao negativo

da derivada parcial da tensao e(x,t) na linha em relacéao a x.

O MODELO ESTA CORRETO!!
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UNICAMP
Reescrevendo a ed.(3) numa forma mais aproprlada e dividindo por
Ax, ODIM-S€: . A s = iter) — GAx . e(xt) — Chx . . e.g
ct
[ & | (x+Ax. ) — i(x.1)
I_G+C' E_l e(x.t) = -— - (6)
Fazendo o limite da equacao (6) quando Ax - 0, tem-se:
G+C Z | emn = - 2 it 7
— lelxt)=— — 1lx.
| Et_| c ' (7)




c | . ¢
A equacéo (5) R+ L E' i(x.t) = - . el x.t)

indica que ha queda de tenséo com a distancia x na linha

pela passagem da corrente nos elementos R e L em série
na linha.

G+C — *
A equacao (7). | e(xt) = cx (e.2)

mostra que ha queda de corrente com a distancia x na
linha devido a existéncia de tensdo nos elementos
paralelos (de fuga) da linha, ou seja G e C. Sao correntes
gue retornam antes do sinal chegar no fim da linha.
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Linha nao dissipativa ideal ou sem perdas
Nessa condicao temos: R=G =0

Neste caso, as egs. (11) e (12) se simplificam para:

L () = LC S e(es) (13)
cx” ot

f._ (x.t) = LC f— i(x.1) (14)

-
-

Cx ol




Linha nao dissipativa ideal ou sem perdas UNICAMP

Verifiguemos que uma solucéo para a eq. (13) é:

e(x,t) = f,(t-/LC X) (15)

Onde f;, € qualquer fungéo univoca do argumento (t-+/LC x)
Alem disso f; tem dimensao de tenséo (dada em volts, no sistema
iInternacional).
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Para efeito de visualizacao do fendmeno de onda, suponha um
caso genérico para f;, como diagramado abaixo:

e(x,r,)‘

a) instante t = {, P
I -

i e-f:(tz-‘\/zgx)
: {

b) instante t = 1,> 1, . A
|
1
: ! —--x
i

i . —
A_IBV'(Iz—t!) = VAL

- efx, Iz)A

onde v=1/+/LC= velocidade de propagacao da onda
Perturbacao de tensao viajando na linha ideal.



Linha nao dissipativa ideal ou sem perdas UNICAMP

Suponha que haja um observador montado na onda, no ponto
marcado P. Ele deve ver a perturbacao (onda) parada. O
argumento ¢ _./| Cx Permanece constante para ele, ou seja:

t—+LC x=K (20)
Fazendo-se a derivada em relacéo ao tempo da eq.(20) tem-se:

1- +/LC %zO

.-%zvﬂ/\/ﬁ[m/s] (21)

velocidade de propagacao da onda



Linha nao dissipativa ideal ou sem perdas UNICAMP

Como num problema de causa e efeito observa-se que
associada a onda de tensao expressa na eq. (15), deve
existir uma correspondente onda de corrente. Tentemos
uma correspondente onda de corrente para a direita como
sendo:

i(X,t) _ fl(t_g/E X) (22)

0

onde Z, deve ser determinada.



Linha nao dissipativa ideal ou sem perdas UNICAMP

Substituindo (22) na eq. (5) (com R =0) tem-se: | &+1 §| i(xf) = - i e(x.2)

0 {fl(t—\/ﬁ x)}

ot Z,

L

_ . % te-JiCx =
OX
= Zifl'(t—ﬁx):\/ﬁfl'(t—\/ﬁx) (23)
0

Z,=L/LC



Linha nao dissipativa ideal ou sem perdas UNICAMP

Para que (23) seja verdadeira, € necessario que a constante
arbitrada Z, verifique arelagdo: L/Z,=+~LC ou Z,=L/J/LC

Ou seja, Z,=R,=+/L/C [9) (24)

A grandeza Z, € conhecida como a impedancia caracteristica da
linha sem perdas, e € dada em Q quando L é dado em H/m, e C em
F/m. Para a linha sem perdas, como se nota de (24), Z, € um
nuamero puramente real, ou seja, Z, = Ry, pois L e C sdo sempre
numeros reais positivos. Desta forma a expressao (22) e de fato a
solucdo de corrente associada a solucdo de tensédo expressa na
eq.(15).



Reflexdes na linha sem perda. Coeficientes de UNICAMP
reflexao de tensao e de corrente

manipulando as relacoes , tem-se:

e, +e,

+ = RC
eC eC
ZO 0

. . + .
Dividindo o numerador e o denominador por €: e rearranjando 0s
termos, obtem-se :

ec _Rc—2p
ee  Rec+Zp




Reflexdes na linha sem perda. Coeficientes de UNICAMP
reflexao de tensao e de corrente

- + . . . ~
A relacdo & /& ¢ conhecida como coeficiente de reflexdo de
tensao I, na posicao da carga, ou seja:

r- & - R-o4 (36)
e, R.+Z,

Na eq. (36) nota-se que o unico valor de R, que evita as reflexdes é
R.=Z,=R,[Q]. Neste caso, I =0 e e =I..el =0

['c = 0 linha casada
I'c = 1 linha aberta

I'c = -1 linha em curto
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Linhas de Regime
Estacionario
Senoidal
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Introducao

O estudo de linha de transmissao em regime permanente
senoidal é muito importante por varias razoes. A
existéncia de uma quantidade imensa de linhas de
poténcia que operam em 60Hz ou 50 Hz pelo mundo ja
seria uma razao bem forte para tal estudo.

H4&, na verdade, uma razao principal para o estudo de
linhas de transmissdo em regime permanente senoidal.
Gracas aos estudos de Fourier, Laplace e outros, qualquer
sinal real no tempo (periodico ou ndo) tem um espectro
em frequéncia.



UNICAMP

Os sinais periodicos sao melhor tratados com o auxilio da Seérie
de Fourier. Uma funcao peridodica € decomposta num tom da
frequéncia fundamental, bem como numa série infinita de
tons senoidais harmoénicos (multiplos inteiros da
fundamental) com suas respectivas amplitudes e fases.

Este fato da origem ao chamado espectro de linhas ou de raias.
Ha dois espectros de maior interesse: o de amplitude e o de
fase. Os sinais nao periodicos, por outro lado, sao melhor
tratados atraves da Integral ou Transformada de Fourier.

A diferenca basica neste caso € que 0s espectros de
amplitude e de fase sado agora cheios ou continuos, e nao
mais sO de raias, como no caso dos sinais periodicos.



UNICAMP

No momento, o que deve ficar claro € o fato de que pode-se
encarar qualquer sinal real no tempo como tendo a sua
contrapartida em frequéncia.

Qualquer sinal real pode ser encarado como sendo uma soma
de infinitos tons senoidais eternos (-~ até +«) de certas
amplitudes e fases. Esta soma deve reproduzir o valor da
funcao (do sinal) para qualquer instante (-» <t < «),



Ty
FLYMOV

A figura mostra um exemplo de como se forma
uma onda complexa (no caso uma onda
quadrada simétrica) e 0 seu respectivo espectro.
A forma de onda resultante (em amarelo) € o
somatorio a todo instante dos termos (em azul) :

onda quadrada
termo Ampl. fase

(cc)

Espectro

S,
oY

UNICAMP




A

FLYMQOV Relacdo entre forma de onda e espectro

Forma tridimensional em perspectiva para ser
mais exato, para a onda quadrada da figura

anterior

v Valor instantaneo em funcao do tempo = forma de onda

A Amplitude em fungao da freqiiéncia = espectro

espectf[] h

Representagao tridimensional

S,
oY
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Solucao Geral de tenséao e Corrente na Linhaem UNICAMP
Regime Permanente Senoidal

Foram vistas as equacoes diferenciais validas numa linha genérica:

I_R+£ f;| i(x,t) = - Hi alx. 1) a a -
: ct ] cx e l A.l
Eq 5 — L~ _Ri - 12 A
g. a
X ot
iG+C i] e(x.t) = — i i(x.1)
Eq. 7
—= -Ge—-C—_ (A.2)
OX ot



Nas equacoOes anteriores a tenséo “e”, bem como a UNICAMP
corrente “i” sao funcoes de “x” e de “t".

No regime estacionario senoidal as tensGes e correntes sao, como ja
visto em teoria de circuitos C.A., as projecoes de vetores ou fasores

girantes, ou seja.:

Im‘

@ €=Rﬂ[E ,exp(ja)r)] (A.3)

O fasor G é o vetor
i te G -exp(j(wt)) " ]
girante p((wt i =Re [I . ﬂXP(Jw r)]

Nas equacOes (A.3) e (A.4), as quantidades entre
parénteses sao conhecidas como fasores girantes.

(A.4)



Nas equacoes (A.3) e (A.4), E e | s&o as amplitudes da UNICAMP
tensdo e da corrente, respectivamente. Isto pode ser visualizado
lembrando as identidades de Euler, e aplicando nas eqgs. (A.3) e
(A.4). Assim,

e =Re|E .cosart + jE .senot|=E . cos ot (A-5)

i=Re[I. coswt + jl .Sena)‘f] - 1. cosat OO



As quantidades conhecidas apenas como fasores UNICAMP
sao as quantidades (reais ou complexas) que se obtem dos fasores
quando se faz t = 0, isto €, quando se omite a dependéncia
temporal.

A omissdo do termo e“t é geralmente feita na teoria de
circuitos alternados senoidais. Sendo assim, se o fasor tensao
num ponto qualquer do circuito for obtido como sendo o
numero complexo E = E;£6,, a correspondente onda de tenséo
real no dominio do tempo é obtida, fazendo:

E =Re [E .exp(] alt)] = FEgcos(at+6,) A7



Ao invés do fasor amplitude, muitas vezes, se UNICAMP
fala no fasor amplitude eficaz. Neste caso, deve-se lembrar que:

1 .
Fasor eficaz = (fasor amplitude)  (A®8)

V2
Um dos aspectos mais interessantes da analise de Fourier reside
no fato de que se soubermos a resposta de amplitude e de fase
para "todos" os tons senoidais no intervalo das frequéncias “de
Interesse"”, ou seja, na banda de frequéncia do sinal de entrada,

saberemos também como é a forma do sinal "transiente" da
resposta temporal numa linha real.




22 _ri-1% e =Re[E .exp(jo r)]

ot

A _ 0 i = Re[] .exp(jo r)]
ox ot
Das equacoes (A.1) e (A.2) nota-se que ha derivadas dos UNICAMP
fasores de tensao e corrente tanto em relacédo a x como a t. Vamos
colocar estas duas equacoes citadas numa forma mais adequada

ao tratamento fasorial.

Substituindo os fasores girantes de (A.3) e de (A.4) e (A.2), tem-se:

;[E . exp(J a)f)] =—RI exp(jor)- joLl exp(jor) (A.9)
X

ag[f . exp( ja}r)]:—GE exp(jor)- joCE exp(jot) (A.10)
X



Omitindo a dependéncia temporal, as equacoes UNICAMP
(A.9) e (A.10) podem ser escritas com derivadas totais:

dE

=-(R + joL) . 1 (A11)
dx
ar _ (G + joC) . E (A-12)

ax



Define-se: UNICAMP

Impedancia série da linha por unidade de comprimento
Z=R+ joL (A.13)
Admitancia paralela da linha por unidade de comprimento

Yy =G+ joC (A.14)



Portanto:

dE
dx

= - /] (A.15)

dl
dx

= - YE (A.16)




UNICAMP

Vamos obter uma equacao diferencial que contenha sé a tensao
fasorial E. Fazendo d(eq. A.15) / dx, tem-se:

d*E dI

dx = -/
- YE dxz dx AL0

ar _
dx

Substituindo (A.16) em (A.17), tem-se:

2
d-FE
= (ZY)E
dxz (A.18)




d*E
- =(ZN)E .\3‘

<,

UNICAMP

Tentemos uma solucao de E para a equacao (A.18).
Deve ser uma funcao que, diferenciada duas vezes, reproduza a
funcao original multiplicada por (ZY).

uma solucao possivel é:

E=Cq exp{— Y xJ

(A.19)
Onde C; é uma constante que tem a dimenséo de tensao (volts).

Entretanto, €& necessario completar a solucdo de E com a
possibilidade de haver reflexces na linha, de volta ao gerador.

e E=CH exp [\@ KJ 429



Portanto, a solucao geral € do tipo:

E=Cq exp{—«/ﬁ xJ + CH exp{\/ﬁ xJ

UNICAMP

(A.21)

Substituindo (A.21) em (A.15) pode-se achar a correspondente

solucao da corrente I, ou seja:

I:\/%{Cl.exp’—ﬁ x]-Czexpﬁ x]}

(A.22)



UNICAMP

A grandeza (complexa em geral) (Z/Y)Y2 é a impedancia
caracteristica Z, da linha real, ou seja,

7 = E_ R+JCDL [Q]
""VY VG+joC (A.23)

Observe que Z, é dada em [Q], e independente do comprimento da
linha: Z, é funcao de R,L,G,C e da frequéncia w = 2.

Lembrete: Para linha sem dissipacéao (ideal) R=G=0e Z, =R, =
(L/C)Y2 (real puro).
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Parallel-plate formulas: 1 &
Zy = Ny———,
W g W
Crg6.,—, w>h
h w>h
h
L=y,—, w>h
w

Recall: LC = ue = Lz

Cq

LC = pp&56, = pie

1 1 G

1
Speed of light in dielectric medium: ¢, = \/— = =
HE \/:uogo \/Jurgr lurgr

¢=2.99792458x10° [m/s]



Inductance per unit length (uWH/m)
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Characteristic Impedance (Q)
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d
&g [F/m] I =20 cosh!
s

= radius of wires




E=C exp[—«/ﬁ xJ + C» expl\/ﬁ xJ

Iz\/%{cl.exp[—ﬁ x]-Czexpﬁ x]}

UNICAMP

observando as equacoes (A.21) e (A.22), nota-se gue a grandeza e
responsavel pela propagacéo. Assim, define-se:

y =vZY =\[(R + joL) (G + joC) =a + jp (A-24)

onde:

Y = const. de propagacao complexa ou funcao de
propagacao.

o = const. de atenuacao da linha dada em [nep/m]

B = const. de desvio de fase da linha dada em [rad/m].



SEM REFLEXAO

Linha infinita, velocidade de fase e comprimento de onda UNICAMP

E instrutivo neste ponto, analisar como ficam as solucdes obtidas na
seccao anterior para o caso de uma linha de transmissao de

comprimento infinito, (¢ = «). A Fig. A.1 ilustra esta situacao.

1, / I
—> [ L= —

by +
—>

aaaaaaaa

Figura A.1 — Linha Infinita.



UNICAMP

Nesta Figura, E; e |, sao os fasores tensao e corrente na posicao
(no lado da transmisséao), E e | sao os fasores tensao e corrente num
ponto qualquer, a uma distancia x do gerador.

Como o termo de propagacao Yy envolve a atenuacao o da linha, que
é uma gquantidade positiva, € natural esperar que as solucfes de
tensao (ver eq.(A.21) e de corrente (ver eq. (A.22) tenham C, = 0.

A existéncia do 2°. termo nas equacOes citadas faria com que este
termo tendesse a infinito, a medida que x — «. Isto seria impossivel
do ponto de vista de energia, uma vez que a linha real dissipa energia
de fato. Portanto C, deve ser zero.



E=C exp[—@ xJ + (2 e"p[‘/ﬁ xJ §\")A-
¥

A solucéao de tensao na linha é entao: @ UNICAMP

E=Ciexp {— JZY xJ (A.25)

— (Propagacao para a direita)

Calculemos C, a partir de uma condicao de contorno. Para X = 0,
tem-se E = E, (tenséo na boca da linha). Entao a eq. (A.25). Pode
Ser escrita como a sequlir:



Parax =0 UNICAMP

E, = Cexpl0] = ¢ (A.26)
E = E, exp|- vZ7 x | = E, exp[- %] (A27)
E =E, exp|-(a+ jB)x] (A28)
E =E, exp|-ax]exp [ j] = E, exp[- orc] £~ (A29)

De (A.29), nota-se que a fase de referéncia (fase zero) e colocada
na tensao de entrada. E, é real e € a amplitude de pico da onda cos
wt. Se, por outro lado, a referéncia de fase for em E;, E; seria
complexa Iindicando alguma fase diferente de zero, dado que Z,
e/ou Z, sao complexas em geral.



I = \/217 {Cl .exp[—ﬁ x] -C,y exp[ﬁ x]}

UNICAMP

A solucéo de corrente € obtida de maneira analoga da eq. (A.22),
fazendo tambéem C; = E; e C, = 0. Obtem-se entao:

E;

I = Z_ 6}1‘[)[— :‘Il’l ﬂ.‘-'{p[— _}/31?] (A.30)
0

Assim, se E, é real (fase zero na tenséo de entrada) tem-se:

E

4

I =
Z,|

exp[—ax|exp[—jBx— jb,] (A.31)
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E importante, neste momento, lembrar que a eq. (A.29) d& a tensdo
na forma fasorial. Para achar a onda no tempo multiplica por elet:

e(x,1) = Re|E; exp(—ax) exp(— jAx)exp(jor)| (A.36)

e(x,t) = E; exp(—ax) cos(wrt - [ix) (A.37)

Da eq. (A.37), nota-se que em cada ponto x qualgquer da linha, ha
uma oscilacdo senoidal (ou cossenoidal) de tensdo com uma
amplitude, e com atraso de fase dado em radianos. Pode-se notar
também que se a # 0 (linha real) a amplitude de oscilacao cali com a
distancia X do gerador, de uma maneira exponencial.
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Note finalmente que, se a = 0 (linha ideal) a amplitude da oscilacao
n&o cai mais com x (é constante, e vale E,); ha apenas um atraso de
fase proporcional a distancia x do gerador (-BXx).

e(x,t) = E; exp(—ax) cos(axt - [ix)

T
A forma de (A.37) é reconhecida como sendo a equacao de uma

onda progressiva (x e t aparecem conjuntamente no argumento do
cosseno). A ideia de uma onda senoidal progressiva € melhor
visualizada se usarmos a ideia do observador montado na onda. O
argumento € entao uma constante, ou seja :

I — ﬁx =K (A.38)



Nota-se que (A.37) descreve uma perturbacao senoidal que~mgBeP
para a direita (sentido de x crescente), uma vez que se t aumenta
(ver eg. A.38), x tem que aumentar, para manter a constante K. A
velocidade desta perturbacédo é obtida de (A.38), diferenciando em
relacéo ao tempo, ou seja.

Dl — px =K

d
@ — [ df = () (A.39)

dx

vf_dr_ﬁ

(A.40)




A equagdo (A.40) define a Velocidade de fase V; da perturbacao’
senoidal.

Se a linha ndo tem perdas (R'= G = 0)a funcdo de propagacéo y
(ver eq. A.24) fornece:

Y =J(joL) (joC) = joNIC =a+jB  (aay

Portanto:

a=0 p=0VvLC (A.42)



VALORES MAIS PRECISOS

UNICAMP

(6,[L, — GNMH) 6,/1‘” + GIIILL/ 2
o =w . 1 + — 1
v 2 G,I-’L/ — G///.,L//

2 Fvili Mgl (A I £X 4 2
BeZE (¢'w —€e'u") \/1+(eu +eu)+1

A 2 G,ILL, - 6NILL”

where,

w = 2n f = angular frequency of the signal in [rad/sec]

¢’ = real part of the complex permittivity (¢ = €’ — je”) in [F/m]

€” = imaginary part of the complex permittivity (¢ = €’ — j€”) in [F/m]

p’ = real part of the complex permeability (u = n' — ju”) in [H/m]

1" = imaginary part of the complex permeability (i = 1/ — ju”) in [H/m]



E(z,t) =Re[E, e’ ™= E, cos(wt — kz)

Direction of
propagation

UNICAMP

\ 4

Velocity of ,, — az — @ — 1
propagation: dt k /ﬂg
27 u

Wavelength: A= -

k
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Assim, substituindo o valor obtido para B de (A.42) em (A.40),

obtém-se: :

dx @ 1 0=0 f=oVIC
Ca i v s = [ms

a=0 p=wJLC f o~ LC LC [ ] (A.43)

Assim, conclui-se que para linha ideal a velocidade de fase é
iIndependente da frequéncia (ver (A.43). Isto € uma consequéncia
de que, na linha ideal, B € diretamente proporcional a frequencia
(ver (A.42)).

Para uma linha real, de modo geral nao é diretamente proporcional
a frequéncia. Por consequéncia, a velocidade da fase nao é uma
constante. Este fato € o responsavel pelo fendmeno da dispersao
em linhas.



DISCUSSAO

UNICAMP

As varias componentes senoidais (pense no espectro de um pulso
iInjetado na linha) viajardo com velocidades de fase diferentes.
Algumas chegarao antes das outras. A composicao de todas elas na
saida da linha ndao mais conformard o mesmo pulso injetado na
entrada, e ele estard entdo distorcido (ou espalhado no tempo).
Este tipo de distorcéo € causado pela nao linearidade da constante
de desvio da fase. E a chamada distor¢éo de fase.

Um outro tipo de distorcdo € a chamada distorcao de amplitude.
Esta aparece devido ao fato de que a constante de atenuacao nao
é, de fato, constante com a frequéncia. O valor de a €& obtido
atraveés da relacao (A.24), é aproximadamente igual a raiz quadrada
da frequéncia.
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O fato de a variar com a frequéencia faz com que as varias
componentes senoidais do pulso ja referido anteriormente sofram
atenuacoes diferentes. Deste modo, elas também n&o podem mais
conformar o pulso que foi injetado na entrada da linha. Assim, ele
aparece distorcido na saida. E entdo o caso de distorcdo de

amplitude. I =L expl- enlessl- jA]
0

Para a corrente dada em (A.30), valem idénticas consideracoes
aguelas ja feitas para a tensdo. E preciso apenas notar que, se Z,
for real, E e | estdo em fase para qualquer ponto x da linha. Se Z,
ndo é real entdo, a corrente | esta atrasada de um angulo 6, em
relacdo a tensdo no mesmo ponto x da linha (ver eq. A.32).

\

I= %cxp[—ax] |(Bx +60)
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Vamos definir agora o comprimento de onda A como a menor
distancia entre dois pontos de mesma fase, ou seja:

fx = fA=27 radianos  (A.44)
x=A
A= i ou [ = o (A.45)
p A
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— Das relacbes (A.45) e (A.40), obtém-se varias identidades de
Interesse

27 27 v
A=—vyr=—vr=—=1y
0, / 2 / f / (A.46)
I

Onde [ é a frequéncia ciclica dada em Hz, T [S] é o periodo da
oscilacao.



it {
+= e -
+ —fi=a
£ infinito
& £, £ _—

o0 < UNICAMP

Linha finita bem terminada

Note que, na Fig. A.1, se a linha for seccionada num valor x = ¢ [m]
mas, a0 mesmo tempo, providenciarmos uma impedancia de carga
Z. = Z, para terminar a linha de comprimento ¢, as solucdes ja

obtidas para E e | para 0 < x < ¢ na seccao anterior devem se
conservar.



Linha finita bem terminada
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—=Isto se explica pelo fato de que os fasores E e | estao
relacionados na linha através de E / | = Z, , para qualquer x . Esta

relacdo continua valida também em x = ¢, por construcao. Assim

— As solucdes dos fasores E e | numa linha finita terminada com
impedancia de carga Z. = Z, [Q] s&o entao aquelas ja obtidas nas
eqgs. (A.29) e (A.30). A Fig. A.2 ilustra a posicao dos fasores de
tensao na linha, em um comprimento de onda.
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/ /./-F\ E './0 x 0
E‘em(-QX/2)/ -ﬁK/Z -‘ \ ] ' & -

’

E exp(-ahr’8) /-BN/8

Fig. A. 2 — Fasores de tensao para x = 0 (no eixo real),
X =Al8, x = A2 e x = 3A/4.

— Note que a ponta dos fasores descreve uma espiral logaritmica
decrescente a medida que se aumenta X, devido ao termo de
atenuacao exp(-ax).



%,
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= As distribuigoes de tensao ao longo da linha, para varios instanies, .
sucessivos, podem ser visualizadas na Fig. A.3.

A

E |exp(- ax)
IEll P = '/-I lI

-
® -
- -
.
» o
-

7] S A

Fig. A.3.-Instantaneos de tenséo na linha real terminada com Z_ = Z,

— Note da Fig. A.3 que as amplitudes das oscilacoes senoidais na
linha decrescem de um modo exponencial, devido a presenca do
termo de atenuacao na solucao de (A.29).— ==z ewladewljal=z ewplals”



Propagation on a microstrip line

TOP VIEW

5 =535

tan o =0.001

h=0.787 [mm] (3 1mils)

w=2.35 [mm]

t=0.0175[mm] ("half 0z" copper cladding)
o, =3.0x10" [S/m]

l t
gr robe V;(t) h 1 T
e
SIDE VIEW
Input signal:
t, =0.5x107° [s]
1.0
v (1)

ON
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Example: Propagation on a microstrip line

Voltage on the Line at z=1cm

\ z=1[cm]

Voltage (V)

Voltage on the Line at z=20cm

Time (s)
g, =233
tan o = 0.001
h=0.787 [mm] (31mils)
w=235 [mm]

t=0.0175[mm] ("half 0z" copper cladding)
5, =3.0x10" [S/m]

s z=20 [cm]
E|
Time (s)
Voltage on the Line at z=100cm
z=100 [cm]

2
g
=

Time (s)
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Reflexdes na Linha e coeficiente de reflexao medido a partir da
carga:

E=E"+E~ (A.47)

onde o fasor E total € a soma do fasor incidente E* e do fasor
refletido E- .

| =17 +1" (A.48)

A corrente é também da mesma forma.



E=C exp[—@ xJ + Cr expl\/ﬁ xJ

I:

! expl-ZY x|-C,explZV x
Jﬁ{cl d |- ex l UNICAMP

A comparacao de (A.47) e (A.48) comaseqs. (A.21)e (A.22)
mostra que

_|_
| T = E_ (A.49)
Zg
-_"E (A.50)
Zg

A determinacao das constantes (que tém dimensao de tensao)
nas solucdes ja obtidas nas egs. (A.21) e (A.22) pode ser feita de
varias maneiras. E util, por exemplo, expressar as quantidades em
funcéo das grandezas terminais (ver Fig. A.4).



E=0C exp[—@ xJ + C» expl\/ﬁ xJ
I = ! {Cl.exp[—ﬁ x]-C2 exp[ﬁ x]}

Jz1y
VA Iy {
g —_— —_—
+'—: e + g ‘1;-
i nfs e ol
"o - —
x=0 g x= 1
l x i 4 I

Fig. A.4 — Diagrama contendo a notacao usada.

Vamos substituir E=1Z, el =1 emX=£nas egs. (A.21) e (A.22).
Obtem-se entao :

|.Z. =C, exp(-y/) + C, exp(y/) (A.51)

112, =C, exp(—y1) - C, exp(y1) (A52)



Somando (A.51) e (A.52), obtém-se C1 dado por : UNICAMP
I

(:1=?f(zIr +Zg)exp(y?) (A.53) (A21)
Subtraindo (A.52) e (A.51), obtém-se C. dado por : E—Cresp|ZT 3]+ Cs explVZT 5]
I
C2 = ?r(Zr — Zo)exp(—ﬂ) (A54) 1=y el 27 o] -y el o)

Assim, substituindo estes valores em (A.21) e (A.22), E e |, respectivamente,
obtém-se :

E :'?r{(zr +Zo)exp[(1-X)] + (Z,-Zo)e[r(x-0]}  (A.55)

| = 27 L {(Z, +Zp)exp[ (£ = X)] - (Zy — Zg) exp[ y(x— 1]} (A.56)
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Se quisermos referir a distancia a partir da carga, pode-se usar a
relacacod =£-X (ver Fig. A.4), temos entao :

E :'?r{(zr +Zg)exp(yd) + (Z, —Zo)exp(—yd)} (A.57)

| = zlz {(Zy +Zg)exp(yd) —(Z, —Zg) exp(—yd)} (A.58)
0

A relacao entre a onda de tenséao refletida pela incidente resulta no
coeficiente de reflexdo de tensao, ou seja:

E- Z,-Z
Et  Z,+Z
['=T, exp(—2ad)exp(—)24d) (A.60)

I =

exp(—2yd) (A.59)



Sendo UNICAMP
Fr :(ZF_ZO)/(ZI’ -|-ZO) (A.61)

0 coeficiente de reflexao de tensao na posicao da carga ou
recepcao. Enquanto o coeficiente de reflexao de corrente ¢ dado
por.

['=-T= £0=Zr exp(—2ad)exp(—j23d) (A.62)
Zr -I-ZO




E =

I I 22 2+ 20)0X000) -2, ~Zo)exp(- 7))
£ {(Z0 + Zo)exp(rd) + (2, - Zo)exp(-7a) \",’

Qualquer ponto da linha ‘0\'

I\CI,CAMF'

A impedancia complexa num ponto da linha € obtida da diviséo
fasor total E pelo total | . assim, usando as egs. (A.57) e (A.58),
obtém-se:

,_E_ 2 (Zy +Zg)expyd +(Z, —Zy)exp(—yd)

A.63
| (Zy +Zg)expyd —(Z, —Zq)exp(—yd) ( )

Ou entao:

Z [exp(yd) +exp(—yd)]+ Zglexp(yd) —exp(—yd)]
Zolexp(yd) +exp(—yd)]+ Z,[exp(yd) —exp(—yd)]

L=Lg . (A.64)



a relacao trigonometrica UNICAMP

exp(yd) - exp(—yd) _ tgh(yd)

(A.65)
exp(yd) + exp(—yd)
_ Z-7, . Zy[exp(yd) +exp(—yd)]+ Zo[exp(yd) —exp(—yd)]
aplicada a (A.64), obtem-se: Zolexp(yd) +exp(-yd)] + Z,[exp(yd) —exp(-yd)]

Zy +Zq tgh(yd) (A.66)

L=/
° Zo+Z, tgh(yd)




LINHA SEM PERDAS
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I * l >
— ZS l—l I
T : i
VS® E’» T (J’, Zo) i Zy 711.
—I
< Z D:d— z’ =]-7z —
Z, +Z, tanh(1) 1
Z,=2()=2, Z,+Z, t:h(ﬁ) :_NOPSUSTYI?:;ERQ?MCSES%FN LINE
ZI’ -I—ZO tgh(]/d)
=17
INPUT IMPEDANCE OF Zo+Z, tgh(yd)
LOSSLESS TRANSMISSION LINE:
Z, + jZ,tan(fl
Z,=Z()=2, : J o tan( )
Z,+ jZ, tan(pfl)




onda estacionaria
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T forward wave

1TV standing wave
TAVAVAVAV !
X




ionArio

Relacao de onda estac

(ROE)

§GE£G20/£=p1Ind;dyd-xapuil/m/B10 IPaLWIIM SUOWWOI//:sdny

‘07 VS-Ad DD YoM umQ - IsLiidwolapiaiu] Ag

V_:__:__:_:::_:_ﬂ

/|

\ ﬁh/ﬁ,J

TR
S

A

1 ____:_

Relacdo ou Razdo

de Onda

Estaciondria (SWR):

1+ I

n._/_n/_ — o - NN ™

1BUA (18up) i op 18N
L (TH]
O« O o
oz 1l [« "4 ||

— 4 e

_,|..L,a,1

= E[F

—

ROE

2.0

1.0 1.5
Position along transmission line {x)

0.5

0.0
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® For electrically short cables (/< 0.1):

» Short-circuit termination (Z,=0): 7. =R+ joL

1

m Open-circuit termination (Z;, =x): [/ =——

Y jeoC
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® For electrically long cables (/> 0.14):

*  Characteristic impedance: 7 = |7 7. = /%

. 1=0/: 7 =20 Short circuit termination measures as open-circuit
) i 7 Open-circuit termination measures as short-circuit
L

« I=2/2: /. = ZL Measured impedance equals load impedance
1

Z1, + jZp tan(Bl)
°Z, + jZr tan(Bl)

For a quarter- wavelength( )transm|55|on line, [ = A and 5l ,8)‘ = 2”% =

1 ¥ 5-Since tan(7%)



Impedance (Q)

1.E407

—— Open termination

J\\ — Short Termination

1.E+06 ®
=== 50 ochm termination
UNICANMP
1.E+05 \

1.E+04 \
1.E+03 \ N

.

1.E+02 \ /

L = Z460 kns/10° | 2.1 pH /\ /
\Z

LEOL Z measured at ~160 kHz . ﬂ‘ V U
(1 MHz / 2m) - 37' |
gives value of L in yH , 03\’ -z I
1E+00 + R ,L’/ \ ; :
N4 ;| ' N2
I
I
H
1E01 '
1.E+02 1.E403 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Frequency (Hz)



1.E+07

—— Open termination
—_— inati “AMP
. \ Z = 1jwC = 1/2nfC. Short Termination
\ C = (1/Z160 k1) *10°6 === 50 ohm termination
\ 1/Z measured at ~160 kHz
(1 MHz / 27)

1.6+05
\ gives value of C in yF

1.E+04 \

% 1.E+03 \ A )

3 640 pF \

E 100 pF/m A
1.E402 \\ —

1.E+01 //\ /

1.E400 + R 1

N4 N2

| —

1.E-01
1.E4+02 1.E+03 1.E+04 1.E405 1.E+06 1.E+07 1.E+08

Frequency (Hz)




1.E+07

1.E+06 \

1.E+05

1.E+04

Open termination

——— Short Termination

== 50 chm termination

Impedance where
curves meet

=Z,(50 Q)
!

A

1.E+03

Impedance (Q)

e

M

1.E+02

BN

N

1.E+01

—

[

1.E400 + R -~ |
Na i ' N2
|
|
1.E-01 '
1.6+02 1.E+03 1.E+04 1.E+05 1.6+06 1.E+07

Frequency (Hz)

1.E+08
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Casamento de Impedancia. (linha sem perdas) UNICAMP
Varias técnicas podem ser usadas para eliminar
reflexdes quando a Impedancia caracteristica da linha e
a impedancia da carga sdo incompativeis.

Técnicas de casamento de impedancia podem ser
projetadas para serem eficazes para uma frequéncia
especifica de operacao (técnicas de banda estreita) ou
para um determinado espectro de frequéncia (técnicas
de banda larga). Um meétodo de casamento de
Impedancia envolve a insercdo de um transformador de
Impedancia entre a linha e a carga

Impedance
Transformer
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O transformador de impedancia e posicionado de modo que esteja
conectado a uma impedancia real Z,. Isto é sempre possivel se
um local de padrdo de onda estacionaria de tensao maxima ou
minima é selecionado.



Zin UNICAMP
:> Z, Z,

“ L =4 »\
Zy=2Z,
Zs=7Zy i+1l:(d) Zo1 el
(d) 1+ IR
= 2 )
. s Z

an(L)so © ZatanBL)+Zy || Zs
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Observe que se a carga for real, o padrdo de onda estacionaria de tensdo na carga é
maxima quando Z, > Z,, ou minima quando Zy < Z,, . O transformador pode ser
conectado diretamente no local da carga ou em um distancia da carga correspondente
a um multiplo de A/4

ZB ZA=ReaI

0> 5o

Z r=Real




EXEMPLO — CARGA REAL

UNICAMP

Rr =100 Q2

Zp = E =Zo1 = Zoz =~/Zo1Rg =~/50-100 = 70.71 Q



IMPEDANCIA COMPLEXA

UNICAMP

Zg Z,

70 =500 Zo| [z | 1ze= 100+ 1000 Transformador na maxima tensao

‘ vz d

max

Qo
)
_l

7 7

~0.62 e e

~ 213.28Q2 Zy=50Q YA Zy; jZR = 100 +j 100Q

100 + j100—-50
100 + j100+ 50

Tg=

Z, =7,

1-Tg
Zoy =~|Zo1Z4 =/50-213.28 =10327 Q s
| W

)
Q

5 _ _ 100+ j100-50
(Zo2)1Zp =Ly, Crl= 100 + j100 + 50 .
Transformador na minima tensao Z, -7, :11:1;: ~ 11720
R

Zop = Zg1Z4 =50 -11.72 = 2421 Q



STUB LINE




YR - I/ZR




LINHAS SEM DISTORCAO

UNICAMP

Condicao de Heaviside

R_G
L C
a) Diminuir R —aumento da bitola — custo

b) Diminuir C —aumentar a distancia dos condutores
c) Aumentar G —aumenta a atenuacao

d) Aumentar L - Pupinizacao

-

QU'WMJ(Q a .mbi\awvm. '

D = - = >
D R \j/’_’_'
] \ -}L
TG = w\-\_.)-lm (=1

P;[Qp e P wi%mii.ogg-ﬁ (P 1 “\
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