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LINHAS DE TRANSMISSAO

condutor utilizado em linhas de transmissao. UNICAMP
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(a) 2 condutores / (b) 1 condutor sobre o solo infinito / (c) cabo
coaxial



“Examples of Transmission Line

" Structures- I

= Cables and wires
(a) Coax cable
(b) Wire over ground
(c) Tri-lead wire
(d) Twisted pair (two-wire line)

" Long distance inTercon%

£ intal. Transmission Lines Class 6
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MODELO DE CIRCUITO - TEM

I(Z- t) rAz 1Az ](Z+AZ, t) UNICAMP
______ .._AAA,_(YYY\_?; P = e e — —
- -
V(iz, t) _—_L cAz glAz § Viz+ Az, t)
[
_____ =g . —e el s e i
I(z, 1) I(z+ Az, 1)
' I
b Az =
| l -
z zZ+Az z
(a)
gz

|
: Az ’: I|< Az >: B Az >:
n
(b)
FIGURE 4.3 The per-unit-length equivalent circuit of a two-conductor line for the
TEM mode of propagation: (a) the equivalent circuit for a Az section; (b) modeling the

entire line as a cascade of Az sections from which the transmission line equations are
derived in the limit as Az — 0.



A analise do comportamento de uma linha de
transmissdo pode ser feita de maneira
rigorosa através da teoria eletromagnética,
Equacoes de Maxwell.

Aqui, no entanto, seguiremos um caminho
alternativo, empregando o método tradicional
baseado na teoria de circuitos de elementos
distribuidos, onda TEM.
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Z, = characteristic impedance
Zs = source impedance
Z; = load (termination) impedance

y = propagation constant = a. + jf

| = length of line
z = distance from beginning of line
z' =distance from end of line



Secao infinitesimal de uma linha de transmissao, onde no
delta x o tempo néo varia.... equacoes de circuito.
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Fig.1 - Linha de transmissio uniforme.



PARAM

ETROS DISTRIBUIDOS-

VARIAVEIS COM A FREQUENCIA

Onde:

R= Resisténcia série da linha por unidade de
comprimento [Q/m]
L= Indutancia série da linha por unidade de

comprimento
C= Capacitan

H/m]
cia paralela da linha por unidade de

comprimento

[F/m]

G= Condutancia paralela da linha por unidade de
comprimento [S/m]

UNICAMP
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Ax : UNICAMP
Fig.1 - Linha de transmissdo uniforme.

Aplicando a lei das malhas de Kirchhoff ao circuito:

-~

e(x.t) = RAY . i(x+Ax,f)+ LAx. & (x+Ax.1) + e(x+ Ax,1) (1)

ct

onde e(x,t) e i(x,t) sdo as variaveis dependentes mais usuais e “X” e
“t” sdo as variaveis independentes (espaco e tempo).

Dividindo (1) por Ax e rearrajando 0s termos, temos:

R+L— |i(x+Axs)= -
| ct |

e(x+ A t) — elx. 1)
Ao

(2)



Ax : e UNICAMP

Fig.1 - Linha de transmissdo uniforme.
elx+ M r) — elx. 1)
Ax

™
e(x. 1) (3)

R+L= |i(x+Axf)= —
ct |

Vejamos agora, a lei dos nos de Kirchhoff:

E.

ct

x4+ Axt) =i(x.t) — GAx . e(x.r) — CAx .

Substituindo (3) em (2), tem-se:

° | ¢ x+ A, ) —elx
Hi | :-E_xgzj—G_j_xtglil’:a‘j—;:‘lrﬂi e( 1) = - el x 1_-;!.‘j e(x, 1) (4)
ok ci d A



R+L — | i:'r;_x;zj—G_i\r\E?(JLr:zj—C%iE(IJJ| -
N ct | | o B

-

e{x+ Ax f)—e(x. 1)
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O modelo assumido fica mais proximo da situacao real a medida que

Ax tende a zero. Aplicando o limite na eq.(4), para Ax - 0, tem-se:

-

R+L = | i(xd) = -
&t |

-

2
— el(x.7)
cx

(5)

E importante observar que o 2° membro de (4) d& origem ao negativo

da derivada parcial da tensao e(x,t) na linha em relacéao a x.

O MODELO ESTA CORRETO!!
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Reescrevendo a ed.(3) numa forma mais aproprlada e dividindo por
Ax, ODIM-S€: . A s = iter) — GAx . e(xt) — Chx . . e.g
ct
[ & | (x+Ax. ) — i(x.1)
I_G+C' E_l e(x.t) = -— - (6)
Fazendo o limite da equacao (6) quando Ax - 0, tem-se:
G+C Z | emn = - 2 it 7
— lelxt)=— — 1lx.
| Et_| c ' (7)




c | . ¢
A equacéo (5) R+ L E' i(x.t) = - . el x.t)

indica que ha queda de tenséo com a distancia x na linha

pela passagem da corrente nos elementos R e L em série
na linha.

G+C — *
A equacao (7). | e(xt) = cx (e.2)

mostra que ha queda de corrente com a distancia x na
linha devido a existéncia de tensdo nos elementos
paralelos (de fuga) da linha, ou seja G e C. Sao correntes
gue retornam antes do sinal chegar no fim da linha.
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EquacOes diferenciais da linha expressas somente em funcao da
tensdo ou somente em funcao da corrente

Diferenciando-se a eq.(5) em relacao a x, e a eq.(7) em relacao at,
para eliminar a corrente.

- -
-

peigieosge|  R—i(ef)+L——i(x)=——e(xd ®)
che cec't cx”

[ & 8 i . E': .

(G+C 7| et == oo ix) ——-Eﬂf!j%—ﬂ' Eﬂrrj 1%, t) (9)

c't & chct
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Equacoes diferenciais da linha expressas somente em funcao da
tensdo ou somente em funcao da corrente

Substituindo-se (9) em (8) e utilizando para o 1° termo de corrente de
(8) o seu valor em tensao fornecido pela eqg. (7), temos:

~ ~3

c

—RGE(;E::}-R::é e(.t) - LG < e(x.6) - LC — e(x.6) +——e(x.) =0 (10)

il | gl |

c't ct c”

Rearranjando (10) e omitindo a dependéncia (x,t) para uma melhor
visualizacao, temos:

(11)
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EquacOes diferenciais da linha expressa
em funcao da corrente

De forma analoga, pode-se obter uma eq. diferencial parcial s6 em
funcao da corrente, diferenciando-se (5) em relacao ate e (7) em

relacao a x. O resultado é :

g,

(12)

-

L T

c -L-—:if-(ﬂ-—:+£f}j§-ﬂr3.:'=m

che” ct”

As egs. (11) e (12) sao conhecidas como equacoOes diferenciais
parciais de onda e definem a propagacao da onda em uma linha.
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Linha nao dissipativa ideal ou sem perdas
Nessa condicao temos: R=G =0

Neste caso, as egs. (11) e (12) se simplificam para:

L () = LC S e(es) (13)
cx” ot

f._ (x.t) = LC f— i(x.1) (14)

-
-

Cx ol




Linha nao dissipativa ideal ou sem perdas UNICAMP

Verifiguemos que uma solucéo para a eq. (13) é:

e(x,t) = f,(t-/LC X) (15)

Onde f;, € qualquer fungéo univoca do argumento (t-+/LC x)
Alem disso f; tem dimensao de tenséo (dada em volts, no sistema
iInternacional).



e(x,t) = f,(t-v/LC x) & ax =16 & o)

co” o't

UNICAMP

Vejamos se a eg. (15) € uma solucao da eq.(13), equacao da
tensao.

% e(xt) = -JLC f; (t-+/LC x) (16)

onde f; significa a derivada de f; em relacdo ao argumento
composto t-+LC X

2
T e(x)=LC f, t-VLC X (17)
OX
que é 0 1° membro da eq. (13). & oxd) = LC S e(xt)
che” ' ot '




& et = LC S e(ur)
cx” ct”
Linha nao dissipativa ideal ou sem perdas UNICAMP
O 2° membro da eq. (13) fica: e(x,t) = f, (t-+LC Xx)
0° 52 ..
LC — e(xt) = LC— fy(t-LC x)=LCf; (t-v/LC x) (18)
ot ot

Comparando (17) com (18), observa-se que a expressao (15) e
realmente uma solucao para a eq. (13).

e(x,t)= f(t—+/LC x) corresponde a uma onda de tensao
propagando-se para a direita (na direita de x crescente).
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The waveform is shifted to the right by Az=¢,¢
“snapshots of the wave”

V(Z,f) =0 f:f1>0 f=f2>t1

@)

O

Z +ch1 Z, +ca,r2



Linha nao dissipativa ideal ou sem perdas UNICAMP

A funcdo f, € a forma de onda que se propaga e tem a ver, na
verdade, com o sinal que foi injetado na linha. Para x =0 a eq.(15)
fornece

e(0,1) = f,(t) (19)

OuU seja, a tensao no inicio da linha (em x = 0) é a funcéo f;, que
representa a forma do sinal injetado na linha. A eq. (19) é pois, uma
condicao de contorno para a solucao da tensao e(x,t) na linha.
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Para efeito de visualizacao do fendmeno de onda, suponha um
caso genérico para f;, como diagramado abaixo:

e(x,r,)‘

a) instante t = {, P
I -

i e-f:(tz-‘\/zgx)
: {

b) instante t = 1,> 1, . A
|
1
: ! —--x
i

i . —
A_IBV'(Iz—t!) = VAL

- efx, Iz)A

onde v=1/+/LC= velocidade de propagacao da onda
Perturbacao de tensao viajando na linha ideal.



Linha nao dissipativa ideal ou sem perdas UNICAMP

Suponha que haja um observador montado na onda, no ponto
marcado P. Ele deve ver a perturbacao (onda) parada. O
argumento ¢ _./| Cx Permanece constante para ele, ou seja:

t—+LC x=K (20)
Fazendo-se a derivada em relacéo ao tempo da eq.(20) tem-se:

1- +/LC %zO

.-%zvﬂ/\/ﬁ[m/s] (21)

velocidade de propagacao da onda
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Xy o1dic [m/s]

dt

A ed. (21) indica que a perturbacao ou onda se move
para a direita (X crescente) com a velocidade de
propagacao indicada em (21).

t—+/LC x=K

Observe de (20) que, se o tempo t aumenta, X deve
crescer para que se mantenha a constante K.



Linha nao dissipativa ideal ou sem perdas UNICAMP

Como num problema de causa e efeito observa-se que
associada a onda de tensao expressa na eq. (15), deve
existir uma correspondente onda de corrente. Tentemos
uma correspondente onda de corrente para a direita como
sendo:

i(X,t) _ fl(t_g/E X) (22)

0

onde Z, deve ser determinada.



Linha nao dissipativa ideal ou sem perdas UNICAMP

Substituindo (22) na eq. (5) (com R =0) tem-se: | &+1 §| i(xf) = - i e(x.2)

0 {fl(t—\/ﬁ x)}

ot Z,

L

_ . % te-JiCx =
OX
= Zifl'(t—ﬁx):\/ﬁfl'(t—\/ﬁx) (23)
0

Z,=L/LC



Linha nao dissipativa ideal ou sem perdas UNICAMP

Para que (23) seja verdadeira, € necessario que a constante
arbitrada Z, verifique arelagdo: L/Z,=+~LC ou Z,=L/J/LC

Ou seja, Z,=R,=+/L/C [9) (24)

A grandeza Z, € conhecida como a impedancia caracteristica da
linha sem perdas, e € dada em Q quando L é dado em H/m, e C em
F/m. Para a linha sem perdas, como se nota de (24), Z, € um
nuamero puramente real, ou seja, Z, = Ry, pois L e C sdo sempre
numeros reais positivos. Desta forma a expressao (22) e de fato a
solucdo de corrente associada a solucdo de tensédo expressa na
eq.(15).



Linha n&o dissipativa ideal ou sem perdas UNICAMP

e oz F10 SUPERIOR
______ 7 e —
e(x, t)
L s F10 INFERIOR
__________
i(x, 1)
-

Convencao de sinais para tensao e corrente na linha
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As solucbes ja encontradas de tensao (eq.(15)) e a sua
correspondente solucao de corrente (eq.(22) sao ambas
perturbacoes que viajam para a direita (X crescente). Para que
as solucdoes de e(x,t) e de i(x,t) se completem é necessario
iIncluir também a possibilidade de se ter onda viajando para a
esquerda, ou seja, no sentido de x decrescente. Sendo assim,
vamos incluir também a solucdo abaixo para a eq. diferencial

(13).

e(x,t)=f,(t++/LC X) (25)
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A correspondente solucao para a corrente pode ser
encontrada se imaginarmos gue esta solucao difere de (25)
apenas por uma constante, ou seja,

f,(t+ JLC X) (26)
K

(X, 1) =

Uma substituicao de (26) na eq.(5) (com R = 0 ) indica gue
(26) e a correspondente solucdo de corrente desde que a
constante K seja igual a —Z,. A solucdo procurada para a
corrente que viaja para a esquerda é entao :

fz(t+\/E X)
Z

0

(X, 1) = -

(27)
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Depois de toda esta discussao sO nos resta colecionarmos
as varias solucOes de tensao e de corrente para as egs.
diferenciais parciais (13) e (14) da linha ideal, ou seja:

e(x,r)zfl(r—ﬁxg o fr(t+LC x) (28)

Propagacdo p/ direita Propagacdo p/ esquerda

_ 1
ix.)=— | fit—+LC x) -  f,(t+~LC %) |
Z,
> < (29)
Propagacdo p/ direita Propagacdo p/ esquerda

O sinal negativo para a 22. parcela de (29) advem da
convencao de sinais de tensao e de corrente ja adotada.
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The waveform is shifted to the left by |Az| =¢,¢
“snapshots of the wave”

v(z,1) =0, >1 i1 0 =0

@)

0,

Z _cdtz
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Loss causes an attenuation in the signal level, and it also causes distortion
(the pulse changes shape and usually gets broader).

Fica mais largo por

|0 E—- causa da indutancial
v(z.1) 1=0 (=1,>0 (¢
; [\ :
( ! : i .
: i i : 0
E Z i ZO+Cdtl i ZOJrca,t2



Hy = 4ﬂx10_7Hf'm Veable =

g, =Lx10'9F;’m
367

For 6.2 m cable:

6.2m=1/4at~8 MH?
6.2m=4/2 at~16 MH7

1 __c g ‘
'\/ﬂr-uﬂg 80 \/Jurar 3
1 200

cable




UNICAMP

Reflexdes na linha sem perda. Coeficientes de reflexao
de tensao e de corrente

As solucBes (28) e (29) encontradas na seccdo anterior
deve-se fazer uma consideracdo. H& obviamente a
possibilidade de que f, seja uma funcdo completamente
iIndependente de f,. Este seria 0 caso de se ter duas fontes
de tenséo independentes; f; no lado esquerdo (x = 0) de uma

linha finita, e f, no lado direito (x = ¢ ) desta mesma linha.

Como o sistema € linear, a solucdo completa da tensao e(x,t)
na linha é a soma das solucdes obtidas individualmente.
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Reflexd0es na linha sem perda. Coeficientes de reflexao de
tensao e de corrente

Entretanto, nesta secéo, estamos interessados no caso em gque
f, ndo e uma funcao qualquer independente de f,. Pelo
contrario, as perturbacoes f, e f, podem ser fortemente
dependentes, uma vez que uma pode ser simplesmente a
reflexdo da outra num ponto qualquer de descontinuidade da
linha.



Reflexdes na linha sem perda. Coeficientes de UNICAMP
reflexao de tensao e de corrente

Antes de se atacar o problema das reflexdes na linha ideal, facamos
uma notacao mais adequada, ou seja:

f1t =~ LC x) = e” (x,1) fensdo p/ a direita  (30)

L +LC x) = e (x,1) tensdo p/ a esquerda (31)
(t=+LC x 2" (x

A > *) - (; ) = i (x,1) corrente p/ a direita  (32)

0

0
— ++VLC x —e (X
/o VLC X) _ € (x.7) = i (x,1) corrente p/ a direita  (33)
Z, Z

0
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Coeficientes de reflexao de tensao e de corrente

Suponhamos uma linha de transmissao ideal terminada em x = ¢ [m]
por um resistor de carga R, [Q)], como ilustrado na Fig. 4.

€ e
= — - -
e — Zy= R, [Q) K, e.=R.{
ao gerador it i Sl
— - i

Fig.4 - Reflexio na carga.
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Reflexdes na linha sem perda. Coeficientes de reflexao
de tensao e de corrente

As tensbes e as correntes totais na carga devem estar
relacionadas pela lei de Ohm:

— =R (34)

(35)

Onde o indice “c” significa tensGes e correntes na posicao
da carga.



Reflexdes na linha sem perda. Coeficientes de UNICAMP
reflexao de tensao e de corrente

manipulando as relacoes , tem-se:

e, +e,

+ = RC
eC eC
ZO 0

. . + .
Dividindo o numerador e o denominador por €: e rearranjando 0s
termos, obtem-se :

ec _Rc—2p
ee  Rec+Zp




Reflexdes na linha sem perda. Coeficientes de UNICAMP
reflexao de tensao e de corrente

- + . . . ~
A relacdo & /& ¢ conhecida como coeficiente de reflexdo de
tensao I, na posicao da carga, ou seja:

r- & - R-o4 (36)
e, R.+Z,

Na eq. (36) nota-se que o unico valor de R, que evita as reflexdes é
R.=Z,=R,[Q]. Neste caso, I =0 e e =I..el =0

['c = 0 linha casada
I'c = 1 linha aberta

I'c = -1 linha em curto




Voltage (V)

Cabo coaxial casado no final da linha

J

L

- Fonte
Carga

-1.00

-0.75

-0.25

0.00
Time (us)

0.25

0.50 0.75

100

UNICAMP

=

—— Fonte

Carga

-1.00 —0.75 -0.50 —0.25 0.00 0.25

0.50 0.75 1.00

Time (us)

RESPOSTA

O atraso entre os sinais de entrada e saida do cabo de 101 metros foi de 518ns .

Logo

01 _ 6
T = 194.98 x 10 m/s




Voltage (V)

10 -

-10 -

Cabo coaxial aberto, reflexao total

- Fonte
Carga

Time (us)

UNICAMP



Reflexdes na linha sem perda. Coeficientes de UNICAMP
reflexao de tensao e de corrente

O coeficiente de reflexao de corrente F(': na posicao da carga
pode também ser definido de forma analoga aquela ja feita para
tensdo. Pode-se mostrar que a expressédo de I'. € dada por :

. | Z,—R
r.==+ = 2= =T, 37
N R.+Z, (37)

C

as consideracoes de reflexdo de corrente, para 0s varios casos
de R, sao semelhantes aquelas ja feitas para a tensao.



Diagrama "Zig-Zag” para as reflexdes na linha. UNICAMP

As multiplas reflexbes que podem ocorrer numa linha podem ser
melhor visualizadas, fazendo uso do chamado diagrama "zig-zag".
Este diagrama sera explicado mediante a aplicacdo do mesmo

problema simples.

Seja 0 caso de uma linha sem perdas R = G = 0 (ver Fig. 6)
excitada por um degrau de tensao de amplitude E volts, no instante
t = 0 e na posicao x = 0 (entrada da linha).

A condicéo de contorno é entéao: e(0,t) = % . u(t) [\/] (42)

onde u(t) &€ a notacao para o degrau unitario.



Diagrama "Zig-Zag" para as reflexdes nalinha. unieamp

+ |
E[V] ‘ ZO-,RO- RC=2R0

oY [w

Fig. 6 — Exemplo para aplicacéo do diagrama "zig-zag”.



Diagrama "Zig-Zag” para as reflexdes na linha. UNICAMP

lu(r) 7]

0 r-[,s*]

Fig. 5 — Degrau unitario de tensao ocorrendo emt = 0.



Diagrama "Zig-Zag” para as reflexdes na linha. UNICAMP

A fonte de tensao € real, e tem uma resisténcia interna R, que, no
exemplo dado, coincide com a Impedancia (ou resisténcia)

caracteristica da linha. Ou seja, Ry =Ry =VL/C [Q] Também, neste
caso, o resistor de carga vale R, = 2R, [Q)].

Uma vez que a linha fornece ondas como solucao para a tensao e
para a corrente, o degrau gerado na boca da linha sal viajando pela
linha, com a velocidade de propagacédo y-1/J/LC | m/s |

I
Depois de decorridos t=T =Y [S] 0 degrau de tensao deve atingir a

carga colocadaem x =¢.



Diagrama "Zig-Zag" para as reflexdes na linha. UNICAMP

Para a construcao do diagrama "zig-zag" de tensao € necessario
obter os coeficientes de reflexao na posicao do gerador (I'y)
No exemplo dado tem-se:

r- R, -Z, _ 2R, -R _ R _ 1 (43)
R. + Z, 2R, + R, 3R, 3
R, — Z R, - R
= 4— = +—2% =0 (44)

R, + 4, R, + R,

Na posicao do gerador
a Impedancia casa com a linha



Diagrama "Zig-Zag"” para as reflexdes na linha. UNICAMP

O diagrama "zig-zag”" de tensado esta ilustrado na Fig. 7.a. O
diagrama de corrente pode ser visto na Fig. 7.b.

a) Tensao b) Corrente

T wlf | T,.mii/ 3 =0 I =-1/3

Er2 | @ | o E/2Z, @ i

- >-T _ T - @ - T

- | “/-Ensz,llJ "

¥r f;] l

2T

L
t
oy,
[« %

-

L

o |

~

~

L

Fig. 7 - Diagrama "zig-zag" para o problema da Fig.6.



Diagrama "Zig-Zag” para as reflexdes nalinha. UNICAMP

Como se nota na Fig. 7, o diagrama “zig-zag” € na verdade um
diagrama espaco x tempo, onde a distancia x é colocada na

horizontal, desde x = 0 até o final da linha x = ¢. O tempo, por outro
lado, € marcado na vertical, e cresce para baixo na Fig.7.

No ponto x =0 et =0 é iniciado o vai-e-vem das ondas, para este
problema em questao. A tensao inicial injetada na linha é facilmente
obtida através de uma divisdo resistiva da tensao E[V] da bateria
entre o valor Z, = R, [Q] “mostrado” pela linha e a sua prépria
resisténcia interna R, , ou seja :

R
eE:E. 0

(45)



Diagrama "Zig-Zag” para as reflexdes na linha. UNICAMP

Como R, = R, (0 gerador esta casado com a linha) a eq. (45) fornece o
valor inicial injetado e§ =E/2|V]. O degrau de amplitude &/, viaja entdo
pela linha e, depois de T [s], atinge o resistor de carga R, = 2R,. Ai
ocorre entao uma reflexao.

A tensédo incidente E/, multiplicada por I'; =1/3 fornece entdo o valor
£/ s para a tensdo degrau, que retorna ao gerador depois de T
segundos adicionais, ou seja, no instante t = 2T [s]. Neste instante,
como R, = R, [Q], Iy =0, nao ha mais ondas refletidas.



Diagrama "Zig-Zag” para as reflexdes na linha. UNICAMP

Para o diagrama “zig-zag” de corrente o0 raciocinio €
semelhante aquele ja feito acima para a tensdo. Obviamente, usa-
se agora os coeficientes de reflexao de corrente I'’c e I'’g . O valor
inicial de corrente é E/2Z, , ou seja, a tensé&o inicial injetada dividida
pela impedancia caracteristica Z, = R,,.

Os valores marcados por circulos séo os valores de tenséo e
corrente ja acumulados, apos cada reflexdo. Apds cada reflexao,
renova-se o valor da soma acumulada.

Finalmente deve-se observar que se I'g (ou I’°g) fosse
diferente de zero no exemplo dado, os diagramas da Fig. 7 se
estenderiam indefinidamente (néao terminariam em t = 2T ).



UNICAMP

Funcdes de tensao e de corrente em relacao a x
(espaco) et (tempo).

Os diagramas da Fig.7 constituem-se numa ferramenta
simples e rapida para se determinar as funcdes e(x,tl) e
I(X,t1) onde t1 é um instante qualguer de interesse. Obtem-
se, neste caso, as chamadas distribuicOes de tensao e de
corrente (funcao so de x ) fazendo-se um corte horizontal

emt=tl.



FuncoOes de tensao e de corrente em relacao UNICAMP
a X (espaco) et (tempo).

A Fig. 8.a ilustra a distribuicao de tensao parat=0,5T.
A Fig. 8.b ilustra a distribuicao de corrente parat=1,5T.

x, 1/2) ;
&) A & b) A i(x, 3T/2)
E/2 . 1 E/2Z,
= _‘___
v LC E/3Z, v
¢ ] - e
0 412 / X 0 1;2 l b 4

Fig. 8§ - Instantdneos de tensdo e corrente na linha para o exemplo dado.
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r, =05

v, = 75 volts

v, =75 <+ 37.5
18.75 =
131.25
volts

V, = 131.25 +
9.375 +
4. 6875 =
145.3125
volts

v, = 14531 +
2.34375 +

o

27T
=

4T

6T

1.171875 =

148.828
volts

v, = 148.828 +

8T

0.5859375 +
0.2929687 =

149,707
volts

10T

SENDING END

75 volts

37.5 volts
18.75 volts

g9.375 volts
4. 6875 voits

2.34375 volts
1.171875 volts

0.5859375 volts
0.29296 volts

0.146484 volts

T

5T

7T

9T

<
I

<
"

=05

v, =0

v, =754+ 375 =
112.5 volts

112.5 + 18.75
4+ 9.375 -
140.625 volts

<
B
Il

140.625 + 4.6875
+ 2.34375 =
147.65625 volts

147.65625 + 1.17187
+ 0.5859375 =
149.414062 volts

v, = 149, 414062 +
0.29296 +
0.146484 =
149.8534 volts

RECEIVING END



149 41 volts
140.62 volts 147.65 volts

112.5 volts
l i - I 1 | [
148, It
131.25 volts 145,31 volts 8.83 volts
75 volts ! —
a l i - 1 | 1 1

Figure 8-9. V and V. a< functions of time.
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rr‘curvvnl) = rr(voﬂ.p!

I-ilrurrph') = —-[‘5"/0””" = '0.05
0
i, = 1.5 amps
27T
i, = 1.5 — 0,75
+ D375 =
1.125 amps
47T
i = A N2E
0. 18725 <+
0.09375 =

1.0312 amps
67
i = 1T.0312 —
0.046875 +
0.023475 =
1.0078 amps
87T
i, = 1.0078 —
0.11718 +
0.005859 =
1.0018 amps

YO s

SENDING END

1.5 amps i, = 0amps
¥ ﬁ\‘
=077 s i, =0+ 1.5+ (-0.75)
3T W,
—0.1875 amps ¥, = ((3.7051-;705.:)575 “*
+0.0937 — V. =
S SRR 0.8375 amps
5T ~=—_
—0.046875 amps i, = 0.9375 + 0.08375
— 0.046875 =

4+0.023437 amps
0.884375 amps

75 1

i, = 0.984375 + 0.023437
- 0.01171875 =
0.99609 amps

—0.011718 amps
+0.005859 amps

o7

—0.002929 amps

RECEIVING END

Figure 8-10. Current Bounce Diagram.
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— 0.98609 amps
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0.75 amps
0 amps | : ' i
T 2T 37 47 Bl 6T g 8T

Figure 8-11. / and /, as functions of time.
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Xy| MC's PlotXY - Plot 1 1
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