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condutor utilizado em linhas de transmissão.

(a) 2 condutores / (b) 1 condutor sobre o solo infinito / (c) cabo 

coaxial

LINHAS DE TRANSMISSÃO





MODELO DE CIRCUITO – TEM 



A análise do comportamento de uma linha de 

transmissão pode ser feita de maneira 

rigorosa através da teoria eletromagnética,

Equações de Maxwell. 

Aqui, no entanto, seguiremos um caminho 

alternativo, empregando o método tradicional 

baseado na teoria de circuitos de elementos 

distribuídos, onda TEM. 





Seção infinitesimal de uma linha de transmissão, onde no 
delta x o tempo não varia.... equações de circuito.



Onde:

R= Resistência série da linha por unidade de 

comprimento [Ω/m]

L= Indutância série da linha por unidade de 

comprimento [H/m]

C= Capacitância paralela da linha por unidade de 

comprimento [F/m]

G= Condutância paralela da linha por unidade de 

comprimento [S/m]

PARÂMETROS DISTRIBUIDOS-

VARIÁVEIS COM A FREQUÊNCIA



Aplicando a lei das malhas de Kirchhoff ao circuito:

onde e(x,t) e i(x,t) são as variáveis dependentes mais usuais e “x” e 

“t” são  as variáveis independentes (espaço e tempo).

Dividindo (1) por Δx e rearrajando os termos, temos:

(1)

(2)



Vejamos agora, a lei dos nós de Kirchhoff:

Substituindo (3) em (2), tem-se:

(3)

(4)



O modelo assumido fica mais próximo da situação real à medida que 

Δx tende a zero. Aplicando o limite na eq.(4), para Δx → 0, tem-se:

É importante observar que o 2° membro de (4) dá origem ao negativo 

da derivada parcial da tensão e(x,t) na linha em relação a x.

(5)

O MODELO ESTÁ CORRETO!!



Reescrevendo a eq.(3) numa forma mais apropriada e dividindo por 

Δx, obtém-se:  

Fazendo o limite da equação (6) quando Δx → 0, tem-se:

(6)

(7)



A equação (5) 

indica que há queda de tensão com a distância x na  linha 

pela passagem da corrente nos elementos R e L em série 

na linha.

A equação (7).       

mostra que há queda de corrente com a distância x na 

linha devido à existência de tensão nos elementos 

paralelos (de fuga) da linha, ou seja G e C. São correntes 

que retornam antes do sinal chegar no fim da linha.



Equações diferenciais da linha expressas somente em função da 

tensão ou somente em função da corrente

Diferenciando-se a eq.(5) em relação a x, e a eq.(7) em relação a t, 

para eliminar a corrente.

(8)

(9)



(10)

(11)

Equações diferenciais da linha expressas somente em função da 

tensão ou somente em função da corrente

Substituindo-se (9) em (8) e utilizando para o 1º termo de corrente de 

(8) o seu valor em tensão fornecido pela eq. (7), temos:

Rearranjando (10) e omitindo a dependência (x,t) para uma melhor 

visualização, temos:



Equações diferenciais da linha expressa

                                em função da corrente

De forma análoga, pode-se obter uma eq. diferencial parcial só em 

função da corrente, diferenciando-se (5) em relação a t e e (7) em 

relação a x. O resultado é :

As eqs. (11) e (12) são conhecidas como equações diferenciais 

parciais de onda e definem a propagação da onda em uma linha. 

(12)



Linha não dissipativa ideal ou sem perdas

Nessa condição temos: R = G = 0

Neste caso, as eqs. (11) e (12) se simplificam para:

(13)

(14)



Linha não dissipativa ideal ou sem perdas

Verifiquemos que uma solução para a eq. (13) é:

Onde f1 é qualquer função unívoca do argumento  

Além disso f1 tem dimensão de tensão (dada em volts, no sistema 

internacional).

(15))   - (   ),( 1 xLCtftxe =

 )  - ( xLCt



Vejamos se a eq. (15) é uma solução da eq.(13), equação da 

tensão.

onde f’1 significa a derivada de f1 em relação ao argumento                    

composto                 .

que é o 1º  membro da eq. (13).    
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Linha não dissipativa ideal ou sem perdas

O 2º membro da eq. (13) fica:

Comparando (17) com (18), observa-se que a expressão (15) é 

realmente uma solução para a eq. (13).

                                  corresponde a uma onda de tensão

propagando-se para a direita (na direita de x crescente).
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Linha não dissipativa ideal ou sem perdas

A função f1 é a forma de onda que se propaga e tem a ver, na 

verdade, com o sinal que foi injetado na linha. Para x =0 a eq.(15) 

fornece

ou seja, a tensão no início da linha  (em x = 0) é a função f1, que 

representa a forma do sinal injetado na linha. A eq. (19) é pois, uma 

condição de contorno para a solução da tensão e(x,t) na linha. 

(19))(),0( 1 tfte =



Para efeito de visualização do fenômeno de onda, suponha um 

caso genérico para f1, como diagramado abaixo:

onde                         velocidade de propagação da onda

               Perturbação de tensão viajando na linha ideal.

  /1 == LCv



Linha não dissipativa ideal ou sem perdas

Suponha que haja um observador montado na onda, no ponto 

marcado P. Ele deve ver a  perturbação (onda) parada. O 

argumento                    permanece constante para ele, ou seja:

Fazendo-se a derivada em relação ao tempo da eq.(20) tem-se:

xLCt −

KxLCt    =− (20)

0      1 =−
dt

dx
LC

 smLCv
dt

dx
/ /1     == (21)

velocidade de propagação da onda



A eq. (21) indica que a perturbação ou onda se move 

para a direita  (x crescente)  com a velocidade de 

propagação indicada em (21).

Observe de (20) que, se o tempo t aumenta, x deve

crescer para que se mantenha a constante K.

 smLCv
dt

dx
/ /1     ==

KxLCt    =−



Linha não dissipativa ideal ou sem perdas

Como num problema de causa e efeito observa-se que 

associada à onda de tensão expressa na eq. (15), deve 

existir uma correspondente onda de corrente. Tentemos 

uma correspondente onda de corrente para a direita como 

sendo:

onde Z0 deve ser determinada.
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Linha não dissipativa ideal ou sem perdas

Substituindo (22) na eq. (5)  (com R = 0) tem-se:
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Linha não dissipativa ideal ou sem perdas

Para que (23) seja verdadeira, é necessário que a constante 

arbitrada Z0 verifique a relação:                           ou

Ou seja,

A grandeza Z0 é conhecida como a impedância característica da 

linha sem perdas, e é dada em Ω quando L é dado em H/m, e C em 

F/m. Para a linha sem perdas, como se nota de (24), Z0 é um 

número puramente real, ou seja, Z0 = R0, pois L e C são sempre 

números reais positivos. Desta forma a expressão (22) é de fato a

solução de corrente associada à solução de tensão expressa na

eq.(15).

(24)

LCZL   / 0 = LCL/  0 =Z

 ==          /    00 CLRZ



Linha não dissipativa ideal ou sem perdas

            

              Convenção de sinais para tensão e corrente na linha



As soluções já encontradas de tensão (eq.(15)) e a sua 

correspondente solução de corrente (eq.(22) são ambas 

perturbações que viajam para a direita (x crescente). Para que 

as soluções de e(x,t) e de i(x,t) se completem é necessário 

incluir também a possibilidade de se ter onda viajando para a

esquerda, ou seja, no sentido de x decrescente. Sendo assim, 

vamos incluir também a solução abaixo para a eq. diferencial 

(13).

)    (  ),( 2 xLCtftxe += (25)



A correspondente solução para a corrente pode ser 

encontrada se imaginarmos que esta solução difere de (25) 

apenas por uma constante, ou seja,

Uma substituição de (26) na eq.(5)  (com R = 0 ) indica que 

(26) é a correspondente solução de corrente desde que a 

constante K seja igual a –Z0. A solução procurada para a 

corrente que viaja para a esquerda é então :
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Depois de toda esta discussão só nos resta colecionarmos 

as várias soluções de tensão e de corrente para as eqs. 

diferenciais parciais (13) e (14) da linha ideal, ou seja:

O  sinal negativo para a 2ª. parcela de (29) advém da 

convenção de sinais de  tensão e de corrente já adotada.

(28)

(29)





Fica mais largo por 

causa da indutância! 





Reflexões na linha sem perda. Coeficientes de reflexão 

de tensão e de corrente

Às soluções (28) e (29) encontradas na secção anterior 

deve-se fazer uma consideração. Há obviamente a 

possibilidade de que f2 seja uma função completamente 

independente de f1. Este seria o caso de se ter duas fontes

de tensão independentes; f1 no lado esquerdo (x = 0) de uma 

linha finita, e f2 no lado direito (x = l ) desta mesma linha. 

Como o sistema é linear, a solução completa da tensão e(x,t) 

na linha é a soma das soluções obtidas individualmente.



Reflexões na linha sem perda. Coeficientes de reflexão de 

tensão e de corrente

Entretanto, nesta seção, estamos interessados no caso em que 

f2 não é uma função qualquer independente de f1. Pelo

contrário, as perturbações f1 e f2 podem ser fortemente

dependentes, uma vez que uma pode ser simplesmente a

reflexão da outra num ponto qualquer de descontinuidade da

linha.



Reflexões na linha sem perda. Coeficientes de 

                          reflexão de tensão e de corrente

Antes de se atacar o problema das reflexões na linha ideal, façamos 

uma notação mais adequada, ou seja:

(30)

(31)

(32)

(33)



Coeficientes de reflexão de tensão e de corrente

Suponhamos uma linha de transmissão ideal terminada em x = l [m] 

por um resistor de carga Rc [Ω], como ilustrado na Fig. 4.



Reflexões na linha sem perda. Coeficientes de reflexão 

de tensão e de corrente

As tensões e as correntes totais na carga devem estar 

relacionadas pela lei de Ohm:

Onde o índice “c” significa tensões e correntes na posição 

da carga.
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Reflexões na linha sem perda. Coeficientes de 

                         reflexão de tensão e de corrente

manipulando as relações , tem-se:

Dividindo o numerador e o denominador por       e rearranjando os 

termos, obtém-se :

c

cc

cc R

Z

e

Z

e

ee
  

00

=

−

+
−+

−+

0

0

ZR

ZR

e

e

c

c

c

c

+

−
=

+

−

+
ce



Reflexões na linha sem perda. Coeficientes de 

                          reflexão de tensão e de corrente

A relação            é conhecida como coeficiente de reflexão de 

tensão           na posição da carga, ou seja:

Na eq. (36) nota-se que o único  valor de Rc que evita as reflexões é 

Rc = Z0 = R0 [Ω]. Neste caso,               e 

(36)
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Γ𝑐 = 0 linha casada
 Γ𝑐 = 1 linha aberta

 Γ𝑐 = -1 linha em curto



Cabo coaxial casado no final da linha



Cabo coaxial aberto, reflexão total  



Reflexões na linha sem perda. Coeficientes de 

                reflexão de tensão e de corrente

O coeficiente de reflexão de corrente      na posição da carga 

pode também ser definido de forma análoga àquela já feita para 

tensão. Pode-se mostrar que a expressão de          é dada por :

as considerações de reflexão de corrente, para os vários casos 

de Rc são semelhantes àquelas já feitas para a tensão.
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Diagrama  ″Zig-Zag″ para as reflexões na linha.

As múltiplas reflexões que podem ocorrer numa linha podem ser 

melhor visualizadas, fazendo uso do chamado diagrama  ″zig-zag″. 

Este diagrama  será  explicado mediante a aplicação do mesmo 

problema simples.

Seja o caso  de uma  linha sem perdas R = G = 0 (ver Fig. 6) 

excitada por um degrau de tensão de amplitude E volts, no instante 

t = 0 e na posição x = 0 (entrada da linha).

A condição de contorno é então:

onde  u(t) é a notação para o degrau unitário.

(42) Vtu
E

te  )(   
2

),0(  .=



Diagrama  ″Zig-Zag″ para as reflexões na linha.

            Fig. 6 – Exemplo para aplicação do diagrama ″zig-zag″.



Diagrama  ″Zig-Zag″ para as reflexões na linha.

           Fig. 5 – Degrau unitário de tensão ocorrendo em t = 0.



Diagrama  ″Zig-Zag″ para as reflexões na linha.

A fonte de tensão é real, e tem uma resistência interna Rg que, no 

exemplo dado, coincide com a impedância (ou resistência) 

característica da linha. Ou seja,                              . .  Também, neste 

caso, o resistor de carga vale Rc = 2R0 [Ω].

Uma vez que a linha fornece ondas como solução para a tensão e 

para a corrente, o degrau gerado na boca da linha sai viajando pela 

linha, com a velocidade de propagação

Depois de decorridos , o degrau de tensão deve atingir a 

carga colocada em x = l .

 ==  /0 CLRRg
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Diagrama  ″Zig-Zag″ para as reflexões na linha.

Para a construção do diagrama ″zig-zag″ de tensão é necessário 

obter os coeficientes de reflexão na posição do gerador         .

No exemplo dado tem-se:
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Na posição do gerador

a impedância casa com a linha



Diagrama  ″Zig-Zag″ para as reflexões na linha.

O diagrama  ″zig-zag″ de tensão está ilustrado na Fig. 7.a. O 

diagrama de corrente pode ser visto na Fig. 7.b.



Diagrama  ″Zig-Zag″ para as reflexões na linha.

Como se nota na Fig. 7, o diagrama “zig-zag” é na verdade um 

diagrama espaço x tempo, onde a distância x é colocada na 

horizontal, desde x = 0 até o final da linha x = l. O tempo, por outro 

lado, é marcado na vertical, e cresce para baixo na Fig.7. 

No ponto x = 0 e t = 0 é iniciado o vai-e-vem das ondas, para este 

problema em questão. A tensão inicial injetada na linha é facilmente 

obtida através de uma divisão resistiva da tensão E[V] da bateria 

entre o valor Z0 = R0 [Ω] “mostrado” pela linha e a sua própria 

resistência interna Rg , ou seja :
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Diagrama  ″Zig-Zag″ para as reflexões na linha.

Como Rg = R0 (o gerador está casado com a linha) a eq. (45) fornece o 

valor inicial injetado . O degrau de amplitude E/2 viaja então  

pela  linha e,  depois de T [s],  atinge o resistor de carga Rc = 2R0. Aí 

ocorre então uma reflexão.

A tensão incidente  E/2  multiplicada por fornece  então o  valor 
E / 6 para a tensão degrau, que retorna ao gerador depois de T 

segundos adicionais, ou seja, no instante t = 2T [s]. Neste instante, 

como Rg = R0 [Ω],            , não há mais ondas refletidas.

 VEeg  2/=+

3/1=c

0=g



Diagrama  ″Zig-Zag″ para as reflexões na linha.

        Para o diagrama “zig-zag” de corrente o raciocínio é 

semelhante àquele já feito acima para a tensão. Obviamente, usa-

se agora os coeficientes de reflexão de corrente Γ’c e Γ’g . O valor 

inicial de corrente é E/2Z0 , ou seja, a tensão inicial injetada dividida 

pela impedância característica Z0 = R0.

        Os valores marcados por círculos são os valores de tensão e 

corrente já acumulados, após cada reflexão. Após cada reflexão, 

renova-se o valor da soma acumulada.

        Finalmente deve-se observar que se Γg (ou Γ’g) fosse 

diferente de zero no exemplo dado, os diagramas da Fig. 7 se 

estenderiam indefinidamente (não terminariam em t = 2T ).



Funções de tensão e de corrente em relação a  x 

(espaço) e t (tempo).

Os diagramas da Fig.7 constituem-se numa ferramenta

simples e rápida para se determinar as funções e(x,t1) e

i(x,t1) onde t1 é um instante qualquer de interesse. Obtém-

se, neste caso, as chamadas distribuições de tensão e de 

corrente (função só de x ) fazendo-se um corte horizontal 

em t = t1 .



Funções de tensão e de corrente em relação

                        a  x (espaço) e t (tempo).

A Fig. 8.a ilustra a distribuição de tensão para t = 0,5 T .

A Fig. 8.b ilustra a distribuição de corrente para t = 1,5 T .



Exemplo 1- Exercício da Aula 02

Γ𝐿 =
150 − 50

150 + 50
= 0.5

Γ𝐺 =
150 − 50

150 + 50
= 0.5

𝐼+ =
𝑉𝐺

𝑍𝐺 + 𝑍0
=

300

150 + 50
= 1,50 𝐴

𝑉+ =
𝑧0

𝑍𝐺+𝑍0
 𝑉𝐺= 

50

150+50
300 = 75 𝑉



Exemplo



Exemplo



Exemplo



Exemplo
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Comparação com o 
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