IT 002 – SOBRETENSÕES EM SISTEMAS ELÉTRICOS DE POTÊNCIA.

Prof. José Pissolato Filho

Campinas, agosto 2022

REGIME TRANSITÓRIO

CONHECIMENTO DAS SOBRETENSÕES A PRIORI FORNECERÁ SUBSÍDIOS PARA A COORDENAÇÃO DE ISOLAMENTO DAS LINHAS, SUBESTAÇÕES ASSIM COMO A ESPECIFICAÇÃO DOS EQUIPAMENTOS E COMPONENTES ELÉTRICOS

OPERAÇÃO DO SISTEMA MAIS CONFIÁVEL

Origem

- Interna
 - Sobretensões de Manobra
 - Sobretensões Temporárias
- Externa
 - Sobretensões atmosférica

As características elétricas dos equipamentos são determinadas pelas sobretensões a que estarão submetidas.

Essas sobretensões podem ser causadas por condições quasi-estacionárias ou por fenômenos de alta frequência de curta duração originados por impactos no sistema de potência.

Algumas são chamadas de sobretensões dinâmicas.

TEORIA DE LINHAS DE TRANSMISSÃO

5

\Rightarrow Típico condutor utilizado em linhas de transmissão.

 \Rightarrow (a) 2 condutores / (b) 1 condutor sobre o solo infinito / (c) cabo coaxial

 \Rightarrow (a) linha de microfita / (b) microfita / (c) PCB

FIGURE 4.3 The per-unit-length equivalent circuit of a two-conductor line for the TEM mode of propagation: (a) the equivalent circuit for a Δz section; (b) modeling the entire line as a cascade of Δz sections from which the transmission line equations are derived in the limit as $\Delta z \rightarrow 0$.

8

- ⇒Uma linha de transmissão é um meio de propagação de sinais elétricos.
- \Rightarrow Pode ser constituída por:
- \Rightarrow Dois condutores paralelos
- \Rightarrow Duas placas paralelas
- \Rightarrow Dois condutores coaxiais
- ⇒ De maneira geral pode ser constituída por dois condutores separados por um dielétrico.

- ⇒A análise do comportamento de uma linha de transmissão pode ser feita de maneira rigorosa através da teoria eletromagnética.
- ⇒Aqui, no entanto, seguiremos um caminho alternativo, empregando o método tradicional baseado na teoria de circuitos de elementos distribuídos.

 \Rightarrow Seção infinitesimal de uma linha de transmissão.

Fig.1 - Linha de transmissão uniforme.

 \Rightarrow Onde:

- \Rightarrow R= Resistência série da linha por unidade de comprimento [Ω /m]
- \Rightarrow L= Indutância série da linha por unidade de comprimento [H/m]
- \Rightarrow C= Capacitância paralela da linha por unidade de comprimento [F/m]
- ⇒G= Condutância paralela da linha por unidade de comprimento [S/m]

 \Rightarrow Aplicando a lei das malhas de Kirchhoff ao circuito:

$$e(x,t) = R\Delta x \quad i(x + \Delta x,t) + L\Delta x \quad \frac{\partial i}{\partial t} \left(x + \Delta x,t\right) + e(x + \Delta x,t) \tag{1}$$

⇒onde e(x,t) e i(x,t) são as variáveis dependentes mais usuais e "x" e "t" são as variáveis independentes (espaço e tempo).

 \Rightarrow Dividindo (1) por Δx e rearrajando os termos, temos:

$$\left[R + L\frac{\partial}{\partial t}\right]i(x + \Delta x, t) = -\frac{e(x + \Delta x, t) - e(x, t)}{\Delta x}$$
(2)

\Rightarrow Introdução

 \Rightarrow Vejamos agora, a lei dos nós de Kirchhoff:

$$i(x + \Delta x, t) = i(x, t) - G\Delta x \cdot e(x, t) - C\Delta x \cdot \frac{\partial}{\partial t} e(x, t)$$
 (3)

 \Rightarrow Substituindo (3) em (2), tem-se:

$$\left[R + L \frac{\partial}{\partial t}\right] \left[i(x,t) - G \Delta x e(x,t) - C \Delta x \frac{\partial}{\partial t} e(x,t)\right] = -\frac{e(x + \Delta x,t) - e(x,t)}{\Delta x}$$
(4)

⇒O modelo assumido fica mais próximo da situação real à medida que Δx tende a zero. Aplicando o limite na eq.(4), para $\Delta x \rightarrow 0$, tem-se:

$$\left[R + L \frac{\partial}{\partial t}\right] i(x,t) = -\frac{\partial}{\partial x} e(x,t)$$
(5)

⇒É importante observar que o 2° membro de (4) dá origem ao negativo da derivada parcial da tensão e(x,t) na linha em relação a x.

 \Rightarrow Reescrevendo a eq.(3) numa forma mais apropriada e dividindo por Δx , obtém-se:

$$\begin{bmatrix} G+C & \frac{\partial}{\partial t} \end{bmatrix} e(x,t) = - \frac{i(x+\Delta x,t) - i(x,t)}{\Delta x}$$
(6)

 \Rightarrow Fazendo o limite de (6) quando $\Delta x \rightarrow 0$, tem-se:

$$\left[G+C \ \frac{\partial}{\partial t}\right] e(x,t) = - \ \frac{\partial}{\partial x} \ i(x,t)$$

(7)

 \Rightarrow A eq.(5) indica que há **queda de tensão** com a distância x na linha pela passagem da corrente nos elementos R e L em série na linha.

$$\left\lfloor R+L \ \frac{\partial}{\partial t} \right\rfloor i(x,t) = - \frac{\partial}{\partial x} e(x,t)$$

 \Rightarrow A eq.(7) mostra que há **queda de corrente** com a distância x na linha devido à existência de tensão nos elementos paralelos (de fuga) da linha, ou seja G e C. São correntes que retornam antes do sinal no fim da linha.

$$\left[G+C \ \frac{\partial}{\partial t}\right] e(x,t) = - \ \frac{\partial}{\partial x} \ i(x,t)$$

Equações diferenciais da linha expressas somente em função da tensão ou somente em função da corrente

 \Rightarrow Diferenciando-se a eq.(5) em relação a x, e a eq.(7) em relação a t, para eliminar a corrente.

$$\left[\frac{R+L\frac{\partial}{\partial t}}{\partial t}i(x,t) = -\frac{\partial}{\partial x}e(x,t)\right]$$

$$R\frac{\partial}{\partial x}i(x,t) + L\frac{\partial^{2}}{\partial x\partial t}i(x,t) = -\frac{\partial^{2}}{\partial x^{2}}e(x,t)$$

$$\left[\frac{G+C\frac{\partial}{\partial t}}{\partial t}e(x,t) = -\frac{\partial}{\partial x}i(x,t)\right]$$

$$G\frac{\partial}{\partial t}e(x,t) + C\frac{\partial^{2}}{\partial t^{2}}e(x,t) = -\frac{\partial^{2}}{\partial x\partial t}i(x,t)$$
(8)
(9)

Equações diferenciais da linha expressas somente em função da tensão ou somente em função da corrente

 \Rightarrow Substituindo-se (9) em (8) e utilizando para o 1º termo de corrente de (8) o seu valor em tensão fornecido pela eq. (7), temos:

$$-RGe(x,t) - RC \frac{\partial}{\partial t} e(x,t) - LG \frac{\partial}{\partial t} e(x,t) - LC \frac{\partial^2}{\partial t^2} e(x,t) + \frac{\partial^2}{\partial x^2} e(x,t) = 0 \quad (10)$$

$$\Rightarrow \text{Rearranjando} \quad (10) \text{ e omitindo a dependência} \quad (x,t) \text{ para uma melhor visualização, temos:}$$

$$\frac{\partial^2 e}{\partial x^2} - LC \frac{\partial^2 e}{\partial t^2} - (RC + LG) \frac{\partial e}{\partial t} - RG \cdot e = 0$$
(11)

⇒ Equações diferenciais da linha expressas somente em função da tensão ou somente em função da corrente

⇒ De forma análoga, pode-se obter uma eq. diferencial parcial só em função da corrente, diferenciando-se (5) em relação a t e e (7) em relação a x. O resultado é :

$$\frac{\partial^2 i}{\partial x^2} - LC \frac{\partial^2 i}{\partial t^2} - (RC + LG) \frac{\partial i}{\partial t} - RG \cdot i = 0$$
(12)

⇒As eqs. (11) e (12) são conhecidas como equações diferenciais parciais de onda.

Linha não dissipativa ideal ou sem perdas

 \Rightarrow Nessa condição temos: R = G = 0

 \Rightarrow Neste caso, as eqs. (11) e (12) se simplificam para:

$$\frac{\partial^2}{\partial x^2} e(x,t) = LC \frac{\partial^2}{\partial t^2} e(x,t)$$
(13)

$$\frac{\partial^2}{\partial x^2} i(x,t) = LC \frac{\partial^2}{\partial t^2} i(x,t)$$

(14)

 \Rightarrow Verifiquemos que uma solução para a eq. (13) é:

$$e(x,t) = f_1(t - \sqrt{LC} x)$$
 (15)

⇒Onde f₁ é qualquer função unívoca do argumento $(t - \sqrt{LC} x)$. Além disso f₁ tem dimensão de tensão (dada em volts, no sistema internacional).

$$\frac{\partial^2}{\partial x^2} \ e(x,t) = LC \ \frac{\partial^2}{\partial t^2} \ e(x,t)$$

Linha não dissipativa ideal/sem perdas

 \Rightarrow Vejamos se a eq. (15) é uma solução da eq. (13).

$$\frac{\partial}{\partial x} e(x,t) = -\sqrt{LC} f_1'(t - \sqrt{LC} x)$$
(16)

 \Rightarrow onde f'₁ significa a derivada de f₁ em relação ao argumento composto $t - \sqrt{LC} x$

$$\frac{\partial^2}{\partial x^2} e(x,t) = LC f_1^{"} (t - \sqrt{LC} x)$$
(17)

 \Rightarrow que é o 1° membro da eq. (13).

$$\frac{\partial^2}{\partial x^2} e(x,t) = LC f_1'' (t - \sqrt{LC} x)$$

 \Rightarrow O 2° membro da eq. (13) fica:

$$LC \ \frac{\partial^2}{\partial t^2} \ e(x,t) = LC \frac{\partial^2}{\partial t^2} f_1(t - \sqrt{LC} \ x) = LC f_1^{"}(t - \sqrt{LC} \ x)$$
(18)

 \Rightarrow Comparando (17) com (18), observa-se que a expressão (15) é realmente uma solução para a eq. (13).

 $\Rightarrow e(x,t) = f(t - \sqrt{LC} x)$ corresponde a uma onda de tensão propagando-se para a direita (na direita de x crescente).

 \Rightarrow A função f₁ é a forma de onda que se propaga e tem a ver, na verdade, com o sinal que foi injetado na linha. Note que para x = 0 a eq.(15) fornece

$$e(0,t) = f_1(t)$$
 (19)

⇒ou seja, a tensão no início da linha (em x = 0) é a função f₁, que representa a forma do sinal injetado na linha. A eq. (19) é pois, uma condição de contorno para a solução da tensão e(x,t) na linha.

 \Rightarrow Para efeito de visualização do fenômeno de onda, suponha um caso genérico para f₁, como diagramado abaixo:

Perturbação de tensão viajando na linha ideal.

⇒ Suponha que haja um observador montado na onda, no ponto marcado P. Ele deve ver a perturbação (onda) parada. O argumento $t - \sqrt{LCx}$ permanece constante para ele, ou seja:

$$t - \sqrt{LC} \ x = K \tag{20}$$

 \Rightarrow Fazendo-se a derivada em relação ao tempo da eq.(20) tem-se:

$$1 - \sqrt{LC} \ \frac{dx}{dt} = 0 \qquad \qquad \therefore \frac{dx}{dt} = v = 1/\sqrt{LC} \left[m/s \right]$$
(21)

- ⇒A eq. (21) indica que a perturbação ou onda se move para a direita (x crescente) com a velocidade de propagação indicada em (21).
- ⇒Observe de (20) que, se o tempo t aumenta (o tempo passa), x deve crescer para que se mantenha a constante K.

⇒Como num problema de causa e efeito observa-se que associada à onda de tensão expressa na eq. (15), deve existir uma correspondente onda de corrente. Tentemos uma correspondente onda de corrente para a direita como sendo:

$$i(x,t) = \frac{f_1(t - \sqrt{LC} x)}{Z_0}$$
 (22)

 \Rightarrow onde Z₀ deve ser determinada.

 \Rightarrow Substituindo (22) na eq. (5) (com R = 0) tem-se:

$$\left[R+L \ \frac{\partial}{\partial t}\right]i(x,t) = -\frac{\partial}{\partial x} \ e(x,t)$$

$$L \frac{\partial}{\partial t} \left[\frac{f_1(t - \sqrt{LC} x)}{Z_0} \right] = -\frac{\partial}{\partial x} f_1(t - \sqrt{LC} x) \Rightarrow$$
$$\Rightarrow \frac{L}{Z_0} f_1'(t - \sqrt{LC} x) = \sqrt{LC} f_1'(t - \sqrt{LC} x)$$
(23)

⇒ Para que (23) seja verdadeira, é necessário que a constante arbitrada Z_0 verifique a relação: $L/Z_0 = \sqrt{LC}$ ou $Z_0 = L/\sqrt{LC}$

$$\Rightarrow$$
 Ou seja, $Z_0 = R_0 = \sqrt{L/C}$ [Ω] (24)

⇒A grandeza Z_0 é conhecida como a **impedância característica** da linha sem perdas, e é dada em Ω quando L é dado em H/m, e C em F/m. Para a linha sem perdas, como se nota de (24), Z_0 é um número puramente real, ou seja, $Z_0 = R_0$, pois L e C são sempre números reais positivos. Desta forma a expressão (22) é de fato a solução de corrente associada à solução de tensão expressa na eq.(15).

 \Rightarrow Nota sobre a convenção de sinais:

⇒ Fig. 3 – Convenção de sinais para tensão e corrente na linha

⇒As soluções já encontradas de tensão (eq.(15)) e a sua correspondente solução de corrente (eq.(22) são ambas perturbações que viajam para a direita (x crescente, na notação da Fig.3). Para que as soluções de e(x,t) e de i(x,t) se completem é necessário incluir também a possibilidade de se ter onda viajando para a esquerda, ou seja, no sentido de x decrescente. Sendo assim, vamos incluir também a solução abaixo para a eq. diferencial (13).

$$e(x,t) = f_2(t + \sqrt{LC} x)$$
 (25)

⇒A correspondente solução para a corrente pode ser encontrada se imaginarmos que esta solução difere de (25) apenas por uma constante, ou seja,

$$i(x,t) = \frac{f_2(t + \sqrt{LC} \ x)}{K}$$
 (26)

⇒ Uma substituição de (26) na eq.(5) (com R = 0) indica que (26) é a correspondente solução de corrente desde que a constante K seja igual a $-Z_0$. A solução procurada para a corrente que viaja para a esquerda é então :

$$i(x,t) = -\frac{f_2(t + \sqrt{LC} \ x)}{Z_0}$$
(27)

⇒ Depois de toda esta discussão só nos resta colecionarmos as várias soluções de tensão e de corrente para as eqs. Diferenciais parciais (13) e (14) da linha ideal, ou seja:

⇒O sinal negativo para a 2 ^a parcela de (29) advém da convenção de sinais de tensão e de corrente já adotada.

⇒Reflexões na linha sem perdas. Coeficientes de reflexão de tensão e de corrente

⇒ As soluções (28) e (29) encontradas na secção anterior deve-se fazer uma consideração. Há obviamente a possibilidade de que f_2 seja uma função completamente independente de f_1 . Este seria o caso de se ter duas fontes de tensão independentes; f_1 no lado esquerdo (x = 0) de uma linha finita, e f_2 no lado direito (x = ℓ) desta mesma linha. Como o sistema é linear, a solução completa da tensão e(x,t) na linha é a soma das soluções obtidas individualmente.
⇒ Entretanto, nesta seção, estamos interessados no caso em que f_2 não é uma função qualquer independente de f_1 . Pelo contrário, as perturbações f_1 e f_2 podem ser fortemente dependentes, uma vez que uma pode ser simplesmente a reflexão da outra num ponto qualquer de descontinuidade da linha.

⇒Antes de se atacar o problema das reflexões na linha ideal, façamos uma notação mais adequada, ou seja:

$$f_{1}(t - \sqrt{LC} x) = e^{+}(x,t) \qquad \text{tensão } p/a \text{ direita} \qquad (30)$$

$$f_{2}(t + \sqrt{LC} x) = e^{-}(x,t) \qquad \text{tensão } p/a \text{ esquerda} \qquad (31)$$

$$\frac{f_{1}(t - \sqrt{LC} x)}{Z_{0}} = \frac{e^{+}(x,t)}{Z_{0}} = i^{+}(x,t) \qquad \text{corrente } p/a \text{ direita} \qquad (32)$$

$$\frac{-f_{2}(t + \sqrt{LC} x)}{Z_{0}} = \frac{-e^{-}(x,t)}{Z_{0}} = i^{-}(x,t) \qquad \text{corrente } p/a \text{ esquerda} \qquad (33)$$

⇒ Suponhamos uma linha de transmissão ideal terminada em x = ℓ [m] por um resistor de carga R_c [Ω], como ilustrado na Fig. 4.

Fig.4 - Reflexão na carga.

⇒As tensões e as correntes totais na carga devem estar relacionadas pela lei de Ohm:

$$\frac{e_{c}}{i_{c}} = R_{c}$$
(34)
$$\frac{e_{c}^{+} + e_{c}^{-}}{i_{c}^{+} + i_{c}^{-}} = R_{c}$$
(35)

⇒Onde o índice "c" significa tensões e correntes na posição da carga.

 \Rightarrow Usando as relações (32) e (33), tem-se:

$$\frac{e_{c}^{+} + e_{c}^{-}}{\frac{e_{c}^{+}}{Z_{0}} - \frac{e_{c}^{-}}{Z_{0}}} = R_{c}$$
(35a)

 \Rightarrow Dividindo o numerador e o denominador por e_c^+ e rearranjando os termos, obtém-se :

$$\frac{e_c^-}{e_c^+} = \frac{R_c - Z_0}{R_c + Z_0}$$
(35b)

⇒A relação e_c^- / e_c^+ é conhecida como coeficiente de reflexão de tensão Γ_c na posição da carga, ou seja:

$$\left| \Gamma_{c} = \frac{e_{c}^{-}}{e_{c}^{+}} = \frac{R_{c} - Z_{0}}{R_{c} + Z_{0}} \right|$$
(36)

⇒Na eq. (36) nota-se que o único valor de R_c que evita as reflexões é $R_c = Z_0 = R_0 [\Omega]$. Neste caso, $\Gamma_c = 0$ e $e_c^- = \Gamma_c \cdot e_c^+ = 0$

⇒ Para os casos extremos de $R_c = 0$ (curto) e $R_c = \infty$ (aberto) tem-se $\Gamma_c = -1$ e $\Gamma_c = +1$, respectivamente. Para estas duas situações tem-se:

$$\Rightarrow e_c^- = -e_c^+$$
 e $e_c^- = e_c^+$, respectivamente

⇒O caso de terminação em curto $R_c = 0 [\Omega]$ pode ser entendido da seguinte forma. Se incidir uma tensão $e_c^+ = 1V$ na carga, há a criação instantânea de uma tensão refletida e de valor -1V, ou seja, de valor contrário uma vez que no curto $\Gamma_c = -1$. A tensão total no curto deve ser igual a zero.

 \Rightarrow O coeficiente de reflexão de corrente Γ_c na posição da carga pode também ser definido de forma análoga àquela já feita para tensão. Pode-se mostrar que a expressão de Γ_c é dada por :

$$\Gamma_{c}^{'} = \frac{i_{c}^{-}}{i_{c}^{+}} = \frac{Z_{0} - R_{c}}{R_{c} + Z_{0}} = -\Gamma_{c}$$
(37)

 \Rightarrow a considerações de reflexão de corrente, para os vários casos de R_c são semelhantes àquelas já feitas para a tensão.

⇒Coeficientes de transmissão de tensão e de corrente na posição da carga.

⇒ Referindo-se novamente à Fig. 4, pode-se definir o coeficiente de transmissão de tensão na posição da carga como sendo:

$$\Gamma_{C} = \frac{\text{tensão total}}{\text{tensão incidente}} = \frac{e_{C}}{e_{C}^{+}}$$
(38)

 \Rightarrow Para obter $\Gamma_{\mathcal{C}}$ vamos utilizar a relação abaixo já obtida posteriormente:

$$\frac{e_c}{\frac{e_c^+}{Z_0} - \frac{e_c^-}{Z_0}} = R_c$$

⇒Coeficientes de transmissão de tensão e de corrente na posição da carga.

 \Rightarrow Vamos dividi-la por e_c^+

$$\frac{e_{c} / e_{c}^{+}}{\frac{1}{Z_{0}} - \frac{e_{c}^{-}}{e_{c}^{+}} \cdot \frac{1}{Z_{0}}} = R_{c}$$

$$\therefore \tau_{c} = \frac{e_{c}}{e_{c}^{+}} = \frac{R_{c}}{Z_{0}} \ (1 - \Gamma_{c})$$
(39)

⇒Coeficientes de transmissão de tensão e de corrente na posição da carga.

 \Rightarrow Usando o valor de Γ_c já obtido na eq. (36), tem-se:

$$\tau_{c} = \frac{e_{c}}{e_{c}^{+}} = \frac{2R_{c}}{R_{c} + Z_{0}}$$
(40)

 \Rightarrow O coeficiente de transmissão de corrente τ_c na posição da carga pode ser obtido de modo análogo, encontrando-se :

$$\tau_{c}' = \frac{i_{c}}{i_{c}^{+}} = \frac{2Z_{0}}{R_{c} + Z_{0}}$$
(41)

\Rightarrow Diagrama "Zig-Zag" para as reflexões na linha.

 \Rightarrow Fig. 6 – Exemplo para aplicação do digrama "zig-zag".

Na recepção e na transmissão

Γ. = 0.5

SENDING END

RECEIVING END

IT006-A – COMPATIBILIDADE ELETROMAGNÉTICA – PROF. PISSOLATO

 \Rightarrow Exemplo

Course 0 10 Course Devenue Disease

Figure 8-11. I, and I, as functions of time.

Linhas de Regime Estacionário Senoidal

Introdução

O estudo de linha de transmissão em regime permanente senoidal é muito importante por várias razões. A existência de uma quantidade imensa de linhas de potência que operam em 60Hz ou 50 Hz pelo mundo já seria uma razão bem forte para tal estudo.

Há, na verdade, uma razão principal para o estudo de linhas de transmissão em regime permanente senoidal. Graças aos estudos de Fourier, Laplace e outros, qualquer sinal real no tempo *(periódico ou não)* tem um espectro em frequência.

Solução Geral de tensão e Corrente na Linha em Regime Permanente Senoidal

Foram vistas as equações diferenciais válidas numa linha genérica:

Equação 5

$$\begin{bmatrix} R + L \frac{\partial}{\partial t} \end{bmatrix} i(x,t) = -\frac{\partial}{\partial x} e(x,t)$$

$$\begin{bmatrix} Q + C \frac{\partial}{\partial t} \end{bmatrix} e(x,t) = -\frac{\partial}{\partial x} i(x,t)$$

$$\frac{\partial i}{\partial x} = -Ge - C \frac{\partial e}{\partial t} \quad (A.2)$$

FASORES GIRANTES

Euler's identity: $e^{\pm j\theta} = \cos\theta \pm j\sin\theta$

Nas equações anteriores a tensão "e", bem como a corrente "i" são funções de "x" e de "t".

No regime estacionário senoidal as tensões e correntes são, como já visto em teoria de circuitos C.A., **as projeções de vetores ou fasores girantes**, ou seja:

$$e = \operatorname{Re}[E \cdot \exp(j\omega t)] \quad (A.3)$$
$$i = \operatorname{Re}[I \cdot \exp(j\omega t)] \quad (A.4)$$

⇒Nas equações (A.3) e (A.4), E e I são as amplitudes da tensão e da corrente, respectivamente. Isto pode ser visualizado lembrando as identidades de Euler, e aplicando nas eqs. (A.3) e (A.4). Assim,

$$e = \operatorname{Re}[E \cdot \cos \omega t + jE \cdot \operatorname{sen} \omega t] = E \cdot \cos \omega t \qquad (A.5)$$

$$i = \operatorname{Re}[I \cdot \cos \omega t + jI \cdot \operatorname{sen}\omega t] = I \cdot \cos \omega t$$
 (A.6)

⇒Nas equações (A.3) e (A.4), as quantidades entre parênteses são conhecidas como fasores girantes.

- \Rightarrow As quantidades conhecidas apenas como fasores são as quantidades *(reais ou complexas)* que se obtém dos fasores quando se faz t = 0, isto é, quando se omite a dependência temporal.
- ⇒A omissão do termo $e^{j\omega t}$ é geralmente feita na teoria de circuitos alternados senoidais. Sendo assim, se o fasor tensão num ponto qualquer do circuito for obtido como sendo o número complexo *E* = $E_0 \angle \theta_0$, a correspondente onda de tensão real no domínio do tempo é obtida, fazendo:

$$E = \operatorname{Re}[E \cdot \exp(j\omega t)] = E_0 \cos(\omega t + \theta_0) \quad (A.7)$$

⇒Ao invés do fasor amplitude, muitas vezes, se fala no fasor amplitude eficaz. Neste caso, deve-se lembrar que:

Fasor efficaz =
$$\frac{1}{\sqrt{2}}$$
 (fasor amplitude) (A.8)

⇒ Um dos aspectos mais interessantes da análise de Fourier reside no fato de que se soubermos a resposta de amplitude e de fase para "todos" os tons senoidais no intervalo das frequências "de interesse", ou seja, na banda de frequência do sinal de entrada, saberemos também como é a forma do sinal "transiente" da resposta temporal numa linha real. Das equações (A.1) e (A.2) nota-se que há derivadas dos fasores de tensão e corrente tanto em relação a x como a t. Vamos colocar estas duas equações citadas numa forma mais adequada ao tratamento fasorial.

Substituindo os fasores girantes de (A.3) e de (A.4) e (A.2), tem-se:

$$\frac{\partial}{\partial x} \left[E \cdot \exp(j\omega t) \right] = -RI \exp(j\omega t) - j\omega LI \exp(j\omega t) \quad (A.9)$$

$$\frac{\partial}{\partial x} \left[I \cdot \exp(j\omega t) \right] = -GE \, \exp(j\omega t) - j\omega CE \, \exp(j\omega t) \quad (A.10)$$

⇒Omitindo a dependência temporal, as equações (A.9) e (A.10) podem ser escritas com derivadas totais:

$$\frac{dE}{dx} = -(R + j\omega L) \cdot I \qquad (A.11)$$

$$\frac{dI}{dx} = -(G + j\omega C) \cdot E \qquad (A.12)$$

 \Rightarrow Define-se:

Impedância série da linha por unidade de comprimento

$$Z = R + j\omega L \tag{A.13}$$

Admitância paralela da linha por unidade de comprimento

$$Y = G + j\omega C \tag{A.14}$$

$$\frac{dE}{dx} = -ZI \qquad (A.15)$$

$$\frac{dI}{dx} = -YE \qquad (A.16)$$

 \Rightarrow Vamos obter uma equação diferencial que contenha só a tensão fasorial *E*. Fazendo *d*(eq. A.15) / *dx*, tem-se:

$$\frac{d^2 E}{dx^2} = -Z\frac{dI}{dx}$$

(A.17)

 \Rightarrow Substituindo (A.16) em (A.17), tem-se:

$$\frac{d^2 E}{dx^2} = (ZY)E$$

(A.18)

⇒ Tentemos uma solução de E para a equação (A.18). Deve ser uma função que, diferenciada duas vezes, reproduza a função original multiplicada por (ZY). Então, uma solução possível é:

$$E = C_1 \exp\left[-\sqrt{ZY} x\right] \tag{A.19}$$

 \Rightarrow Onde C₁ é uma constante que tem a dimensão de tensão (volts). Entretanto, é necessário completar a solução de *E* com a possibilidade de haver reflexões na linha, de volta ao gerador. Vamos incluir:

$$E = C_2 \exp\left[\sqrt{ZY} \mathbf{x}\right] \tag{A.20}$$

Portanto, a solução geral é do tipo:

$$E = C_1 \exp\left[-\sqrt{ZY} x\right] + C_2 \exp\left[\sqrt{ZY} x\right]$$

Substituindo (A.21) em (A.15) pode-se achar a correspondente solução da corrente *I*, ou seja:

$$I = \frac{1}{\sqrt{Z/Y}} \left\{ C_1 \cdot \exp\left[-\sqrt{ZY} x\right] - C_2 \exp\left[\sqrt{ZY} x\right] \right\}$$
(A.22)

A grandeza (complexa em geral) $(Z/Y)^{1/2}$ é a impedância característica Z_0 da linha real, ou seja,

$$Z_{0} = \sqrt{\frac{Z}{Y}} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \qquad [\Omega]$$

Observe que Z_0 é dada em [Ω], e independente do comprimento da linha: Z_0 é função de R,L,G,C e da frequência $\omega = 2\pi f$.

Lembrete: Para linha sem dissipação (*ideal*) R=G=0 e $Z_0 = R_0 = (L/C)^{1/2}$ (*real puro*).

(A.23

⇒ Por outro lado, observando as equações (A.21) e (A.22), nota-se que a grandeza é responsável pela propagação. Assim, definese:

$$\gamma = \sqrt{ZY} = \sqrt{(R + j\omega L) (G + j\omega C)} = \alpha + j\beta$$

onde:

 γ = const. de propagação complexa ou função de propagação.

 α = const. de atenuação da linha dada em [nep/m]

 β = const. de desvio de fase da linha dada em [rad/m].

Linha infinita, velocidade de fase e comprimento de onda

⇒É instrutivo neste ponto, analisar como ficam as soluções obtidas na secção anterior para o caso de uma linha de transmissão de comprimento infinito, ($\ell = \infty$). A Fig. A.1 ilustra esta situação.

Figura A.1 – Linha Infinita.

- ⇒Nesta Figura, E_t e I_t são os fasores tensão e corrente na posição *(no lado da transmissão)*, $E \in I$ são os fasores tensão e corrente num ponto qualquer, a uma distância x do gerador.
- ⇒ Como o termo de propagação γ envolve a atenuação α da linha, que é uma quantidade positiva, é natural esperar que as soluções de tensão (ver eq.(A.21) e de corrente (ver eq. (A.22) tenham $C_2 = 0$.
- ⇒ A existência do 2º. termo nas equações citadas faria com que este termo tendesse a infinito, à medida que x → ∞. Isto seria impossível do ponto de vista de energia, uma vez que a linha real dissipa energia de fato. Portanto C₂ deve ser zero.
\Rightarrow A solução de tensão na linha é então:

$$E = C_1 \exp\left[-\sqrt{ZY} x\right]$$
 (A.25)

→ (Propagação para a direita)

⇒ Calculemos C_1 a partir de uma condição de contorno. Para x = 0, tem-se $E = E_t$ (tensão na boca da linha). Então a eq. (A.25). Pode ser escrita como a seguir:

$$E_t = C_1 \exp[0] = C_1 \tag{A.26}$$

$$E = E_t \exp\left[-\sqrt{ZY} x\right] = E_t \exp\left[-\gamma x\right]$$
(A.27)

$$E = E_t \exp\left[-\left(\alpha + j\beta\right)x\right]$$
(A.28)

$$E = E_t \exp\left[-\alpha x\right] \exp\left[-j\beta x\right] = E_t \exp\left[-\alpha x\right] \angle^{-\beta x}$$
(A.29)

⇒ De (A.29), nota-se que a fase de referência *(fase zero)* é colocada na tensão de entrada. E_t é real e é a amplitude de pico da onda *cos ωt*. Se, por outro lado, a referência de fase for em E_g , E_t seria complexa indicando alguma fase diferente de zero, dado que Z_g e/ou Z_0 são complexas em geral.

⇒ A solução de corrente é obtida de maneira análoga da eq. (A.22), fazendo também $C_1 = E_t e C_2 = 0$. Obtém-se então:

$$I = \frac{E_t}{Z_0} \exp\left[-\alpha x\right] \exp\left[-j\beta x\right]$$
(A.30)

 \Rightarrow Assim, se E_t é real (fase zero na tensão de entrada) tem-se:

$$I = \frac{E_t}{|Z_0|} \exp\left[-\alpha x\right] \exp\left[-j\beta x - j\theta_0\right]$$
(A.31)

$$I = \frac{E_t}{|Z_0|} \exp\left[-\alpha x\right] \, \left[\frac{\beta x + \theta o}{2} \right] \tag{A.32}$$

Onde: $Z_o = |Z_0| \langle \theta_0 = |Z_0| \exp[j\theta_0]$ é uma grandeza complexa geral

 \Rightarrow Observe de (A.29) e (A.30) que:

$$\frac{E}{I} = Z_0 \quad (A.33) \quad \text{ou} \quad \frac{I}{E} = Y_0 \quad (A.34)$$
Onde: $Y_0 = \frac{1}{Z_0} = |Y_0| \langle -\theta_0 = |Y_0| e^{-j\theta_0} \quad (A.35)$

⇒É importante, neste momento, lembrar que a eq. (A.29) dá a tensão na forma fasorial. Para achar a onda no tempo, faz-se:

$$e(x,t) = \operatorname{Re}\left[E_t \exp(-\alpha x) \exp(-j\beta x) \exp(j\omega t)\right] \quad (A.36)$$

$$e(x,t) = E_t \exp(-\alpha x) \cos(\omega t - \beta x)$$
(A.37)

⇒ Da eq. (A.37), nota-se que em cada ponto x qualquer da linha, há uma oscilação senoidal *(ou cossenoidal)* de tensão com uma amplitude, e com atraso de fase dado em radianos. Pode-se notar também que se $\alpha \neq 0$ *(linha real)* a amplitude de oscilação cai com a distância x do gerador, de uma maneira exponencial.

- ⇒Note finalmente que, se $\alpha = 0$ (*linha ideal*) a amplitude da oscilação não cai mais com x (é constante, e vale E_t); há apenas um retardo de fase proporcional à distância x do gerador (- βx).
- ⇒A forma de (A.37) é reconhecida como sendo a equação de uma onda progressiva (x e t aparecem conjuntamente no argumento do cosseno). A ideia de uma onda senoidal progressiva é melhor visualizada se usarmos a ideia do observador montado na onda. O argumento é então uma constante, ou seja :

$$\omega t - \beta x = K \tag{A.38}$$

⇒Nota-se que (A.37) descreve uma perturbação senoidal que viaja para a direita (sentido de x crescente), uma vez que se t aumenta (ver eq. A.38), x tem que aumentar, para manter a constante K. A velocidade desta perturbação é obtida de (A.38), diferenciando em relação ao tempo, ou seja:

$$\omega - \beta \, \frac{dx}{dt} = 0 \tag{A.39}$$

$$v_f = \frac{dx}{dt} = \frac{\omega}{\beta}$$

(A.40)

- \Rightarrow A equação (A.40) define a velocidade de fase v_f da perturbação senoidal.
- ⇒ Se a linha não tem perdas (R = G = 0) a função de propagação γ (ver eq. A.24) fornece:

$$\Upsilon = \sqrt{(j\omega L) (j\omega C)} = j\omega \sqrt{LC} = \alpha + j\beta \qquad (A.41)$$

Portanto:

$$\alpha = 0 \quad \beta = \omega \sqrt{LC} \tag{A.42}$$

 \Rightarrow Assim, substituindo o valor obtido para β de (A.42) em (A.40), obtém-se:

$$v_f = \frac{\omega}{\omega\sqrt{LC}} = \frac{1}{\sqrt{LC}} \left[\text{m/s} \right]$$
(A.4)

- \Rightarrow Assim, conclui-se que para linha ideal a velocidade de fase é independente da frequência (ver (A.43). Isto é uma consequência de que, na linha ideal, β é diretamente proporcional à frequência (ver (A.42)).
- \Rightarrow Para uma linha real, de modo geral não é diretamente proporcional à frequência. Por consequência, a velocidade da fase não é uma constante. Este fato é o responsável pelo fenômeno da dispersão em linhas. 81

 \Rightarrow Vamos definir agora o comprimento de onda λ como a menor distância entre dois pontos de mesma fase, ou seja:

$$\beta x = \beta \lambda = 2\pi \text{ radianos}$$
(A.44)

$$\lambda = \frac{2\pi}{\beta} \text{ ou } \beta = \frac{2\pi}{\lambda}$$

⇒Das relações (A.45) e (A.40), obtém-se várias identidades de interesse

$$\lambda = \frac{2\pi}{\omega} v_f = \frac{2\pi}{\frac{2\pi}{T}} v_f = \frac{v_f}{f} = T v_f \quad (A.46)$$

Onde f é a frequência cíclica dada em Hz, T [s] é o período da oscilação

Fig. A.4 – Diagrama contendo a notação usada.

Vamos substituir $E = I_r Z_r$ e $I = I_r$ em $x = \ell$ nas eqs. (A.21) e (A.22). Obtém-se então :

$$I_r Z_r = C_1 \exp(-\gamma \ell) + C_2 \exp(\gamma \ell)$$
 (A.51)

$$I_r Z_0 = C_1 \exp(-\gamma \ell) - C_2 \exp(\gamma \ell)$$
 (A.52)

Somando (A.51) e (A.52), obtém-se C_1 dado por :

$$C_1 = \frac{I_r}{2} \left(Z_r + Z_0 \right) \exp(\gamma \ell) \tag{A.53}$$

Subtraindo (A.52) e (A.51), obtém-se C_2 dado por :

T

$$C_2 = \frac{I_r}{2} \left(Z_r - Z_0 \right) \exp\left(-\gamma \ell \right) \tag{A.54}$$

Assim, substituindo estes valores em (A.21) e (A.22), $E \in I$, respectivamente, obtém-se :

85

$$E = \frac{I_r}{2} \left\{ \left(Z_r + Z_0 \right) \exp\left[\gamma(\ell - x) \right] + \left(Z_r - Z_0 \right) \exp\left[\gamma(x - \ell) \right] \right\}$$
(A.55)

$$I = \frac{I_r}{2Z_0} \{ (Z_r + Z_0) \exp[\gamma(\ell - x)] - (Z_r - Z_0) \exp[\gamma(x - \ell)] \}$$
(A.56)

Se quisermos referir a distância a partir da carga, pode-se usar a relação d = l - x (ver Fig. A.4), temos então :

$$E = \frac{I_r}{2} \{ (Z_r + Z_0) \exp(\gamma d) + (Z_r - Z_0) \exp(-\gamma d) \}$$
(A.57)
$$I = \frac{I_r}{2Z_0} \{ (Z_r + Z_0) \exp(\gamma d) - (Z_r - Z_0) \exp(-\gamma d) \}$$
(A.58)

A relação entre a onda de tensão refletida pela incidente resulta no coeficiente de reflexão de tensão, ou seja:

$$\Gamma = \frac{E^{-}}{E^{+}} = \frac{Z_r - Z_0}{Z_r + Z_0} \exp(-2\gamma d)$$
(A.59)
$$\Gamma = \Gamma_r \exp(-2\alpha d) \exp(-j2\beta d)$$
(A.60)

Sendo

$$\Gamma_r = \left(Z_r - Z_0 \right) / \left(Z_r + Z_0 \right) \tag{A.61}$$

o coeficiente de reflexão de tensão na posição da carga ou recepção. Enquanto o coeficiente de reflexão de corrente é dado por:

$$\Gamma' = -\Gamma = \frac{Z_0 - Z_r}{Z_r + Z_0} \exp(-2\alpha d) \exp(-j2\beta d)$$
 (A.62)

A impedância complexa num ponto da linha é obtida da divisão do fasor total *E* pelo total *I*. assim, usando as eqs. (A.57) e (A.58), obtém-se:

$$Z = \frac{E}{I} = Z_0 \frac{\left(Z_r + Z_0\right) \exp \gamma d + \left(Z_r - Z_0\right) \exp(-\gamma d)}{\left(Z_r + Z_0\right) \exp \gamma d - \left(Z_r - Z_0\right) \exp(-\gamma d)}$$
(A.63)

Ou então:

$$Z = Z_0 \cdot \frac{Z_r[\exp(\gamma d) + \exp(-\gamma d)] + Z_0[\exp(\gamma d) - \exp(-\gamma d)]}{Z_0[\exp(\gamma d) + \exp(-\gamma d)] + Z_r[\exp(\gamma d) - \exp(-\gamma d)]}$$

(A.64)

Por meio da relação trigonométrica

$$\frac{\exp(\gamma d) - \exp(-\gamma d)}{\exp(\gamma d) + \exp(-\gamma d)} = tgh(\gamma d)$$
(A.65)

aplicada à (A.64), obtém-se:

$$Z = Z_0 \frac{Z_r + Z_0 tgh(\gamma d)}{Z_0 + Z_r tgh(\gamma d)}$$
(A.66)

Se $Z_r = Z_0$ a impedância Z em qualquer ponto da linha é também igual a Z_0 .