IT 002 – SOBRETENSÕES EM SISTEMAS DE ENERGIA ELÉTRICA

Aula-06 Simulação de Linhas de Transmissão no ATP Descargas Atmosféricas e LT trifásicas

Prof. Dr. José Pissolato Filho (Unicamp) Anderson Ricardo Justo de Araújo (Unicamp) Jaimis Sajid Leon Colqui (Unesp)

30 de abril de 2021

- Diagrama de Lattice para LT em curto
- Descargas atmosféricas no ATP
- Modelagem de fontes de corrente
- Linhas de Transmissão Trifásicas

Classificação dos fenômenos que originam TEM-Espectro de frequência

Tabela Cigré¹

Origin	frequency range		
Transformer energization			
ferroresonance	(DC) 0.1 Hz - 1 kHz		1) Am
Load rejection	0.1 Hz - 3 kHz		51 Salt 1
Fault clearing	50/60 Hz - 3 kHz		8
Fault initiation	50/60 Hz - 20 kHz		· / 1984
Line energization	50/60 Hz - 20 kHz		
Line reclosing	(DC)50/60Hz - 20 kHz		
Transient recovery voltage		V_E V_0 Transmission line V_R	And the second se
Terminal faults	50/60 Hz - 20 kHz		
Short line faults	50/60 Hz - 100 kHz	1 2 3	
Multiple restrikes			
of circuit breaker	10 kHz - 1 MHz		
		Source Load	
Lightning surges,			
Taults in substations	10 kHz - 3 MHz		A NINT PARTY
Disconnector switching		÷ ÷	
(single restrike) and			
faults in GIS	100 kHz - 50 MHz	←	
L			

1-Adaptado de: Cigre 39. (1990). GUIDELINES FOR REPRESENTATION OF NETWORK ELEMENTS WHEN CALCULATING TRANSIENTS.

Espectro de frequência dos fenômenos que originam os TEMs¹

1-Adaptado de: Caballero, P. T. (2018). INCLUSÃO DO EFEITO DA FREQUÊNCIA NO MODELO DE BERGERON: REPRESENTAÇÃO DE LINHAS DE TRANSMISSÃO CURTAS E LONGAS CONSIDERANDO TRANSITÓRIOS ELETROMAGNÉTICOS RESULTANTES DE OPERAÇÕES DE MANOBRAS E DE DESCARGAS ATMOSFÉRICAS. UNESP-Ilha Solteira (Tese).

Espectro da frequência de uma Descarga Atmosférica

Os fatores mais importantes são amplitude e o tempo de frente

Alguns autores também usam o termo 'densidade espectral de energia'. Assim, 1.2/50 us tem maior energia nas altas frequências

Função de Heidler

$$i(t) = \frac{I_0}{\eta} \frac{(t/\tau_1)^n}{1 + (t/\tau_1)^n} (e^{-t/\tau_2})$$

Parameters	I ₀	$ au_1$	$ au_2$	n	I ₀	τ_1	$ au_2$	n
First stroke	28	1.8	95	2				
Subsequent stroke	10.7	0.25	2.5	2	6.5	2	230	2
35								

$$i(t) = \sum_{1}^{N} \frac{I_0}{\eta} \frac{(t/\tau_1)^n}{1 + (t/\tau_1)^n} (e^{-t/\tau_2})^n$$

Ondas Refletidas na LT e Diagrama de Lattice

Uma forma simples de ver as ondas refletidas é interpretar cada parte do circuito como um "meio" distinto, cuja impedância determinará a parcela de tensão/corrente refletida.

Coef. de reflexão para a tensão

$$\Gamma_{L} = \frac{V^{-}}{V^{+}} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}$$

$$\Gamma_G = \frac{Z_G - Z_0}{Z_G + Z_0}$$

Coef. de reflexão para a corrente

$$\Gamma_L^i = \frac{Z_0 - Z_L}{Z_L + Z_0} = -\Gamma_L$$

$$\Gamma_G^i = \frac{Z_0 - Z_G}{Z_G + Z_0} = -\Gamma_G$$

Valores iniciais e de regime

9

Ondas Refletidas na LT e Diagrama de Lattice

Exemplo 1- Exércicio da Aula 02

$$\Gamma_L = \frac{150 - 50}{150 + 50} = 0.5$$

$$I^+ = \frac{V_G}{Z_G + Z_0} = \frac{300}{150 + 50} = 1,50 A$$

$$\Gamma_G = \frac{150 - 50}{150 + 50} = 0.5$$

$$V^+ = \frac{Z_0}{Z_G + Z_0} V_G = \frac{50}{150 + 50} 300 = 75 V$$

Exemplo 1- Diagrama de Lattice (Tensão)

12

Exemplo 1- Diagrama de Lattice (Corrente)

(file exemplo_aula.pl4; x-var t) v:XX0004 v:XX0003

Cálculo da tensão em qualquer ponto da LT

Coef. de reflexão para a tensão

$$\Gamma_{L} = \frac{V^{-}}{V^{+}} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}$$

$$\Gamma_G = \frac{Z_G - Z_0}{Z_G + Z_0}$$

Coef. de reflexão para a corrente

$$\Gamma_L^i = \frac{Z_0 - Z_L}{Z_L + Z_0} = -\Gamma_L$$

$$\Gamma_G^i = \frac{Z_0 - Z_G}{Z_G + Z_0} = -\Gamma_G$$

Diagrama de Lattice

Em regime transitório

(file exemplo_aula.pl4; x-var t) c:XX0007-XX0004 c:XX0001-XX0006

Em regime permanente

(file exemplo_aula.pl4; x-var t) c:XX0007-XX0004 c:XX0001-XX0006

Descargas atmosféricas

Função Dupla-Exponential

$$i(t) = \frac{I_0}{k}(e^{-at} - e^{bt})$$

Impulse Voltage Generator

₩ R6

Ŵ

Circuito de um gerador de impulso

27

No ATP

₽ _≡ =	Probes & 3-phase	+	
₩¥	Branch Linear	•	
Ê	Branch <u>N</u> onlinear	- +	
¶°©	Lines/Cables	- +	
<u>-</u> ¥-	S <u>w</u> itches	•	
\odot	Sources	•	
⊛	M <u>a</u> chines	•	
00	T <u>r</u> ansformers	•	
	MODELS	•	
٢	TACS	•	
¢.	User Specified	•	
1Ž	St <u>e</u> ady-state	•	
R	Power system tools	•	
F	All stan <u>d</u> ard comp		
1	Add Objects	•	

<u>A</u> C source (1&3)
DC type 11
<u>R</u> amp type 12
<u>S</u> lope-Ramp type 13
Surg <u>e</u> type 15
<u>H</u> eidler type 15
S <u>t</u> andler type 15
Cigré type 15
TACS source
AC Source modulated
Empirical type 1
A <u>C</u> Ungrounded
DC <u>U</u> ngrounded
Trapped charge source

	Component: SURGE X							
	Attributes							
₩ .	DATA	UNIT	VALUE		NODE	PHASE	NAME	
	Amplitude	Volt	10000		SU	1		
	A	1/s	-14700					
	В	1/s	-2470000					
	Tstart	s	0					
	Tstop	s	1000					
	Copy 🛅 F	Paste 💌 🛄 Re	eset Order:	0	Labe	el:	I	
	Comment:							
	Type of source	1					Ніде	
	 Current 							
	Voltage							
		/						
	Edit definitions			<u>о</u> к		<u>C</u> ancel	Help	

Função de Heidler

$$i(t) = \frac{I_0}{\eta} \frac{(t/\tau_1)^n}{1 + (t/\tau_1)^n} (e^{-t/\tau_2})$$

₽ ₌ =	Probes & 3-phase	•
~∿⊱ ‴∰	<u>B</u> ranch Linear	•
æ	Branch <u>N</u> onlinear	→
¶°©	Lines/Cables	•
<u>-</u> ¥-	S <u>w</u> itches	•
\otimes	<u>S</u> ources	•
0	M <u>a</u> chines	•
\odot	T <u>r</u> ansformers	•
	MODELS	•
تيًا	TACS	•
¢.	User Specified	•
12	St <u>e</u> ady-state	•
紧	Power system tools	•
ŧ.	All stan <u>d</u> ard comp	
	Add Objects	•

<u>A</u> C source (1&3)
DC type 11
<u>R</u> amp type 12
<u>S</u> lope-Ramp type 13
Surg <u>e</u> type 15
<u>H</u> eidler type 15
S <u>t</u> andler type 15
Cigré type 15
TACS source
AC Source modulated
Empirical type 1
A <u>C</u> Ungrounded
DC <u>U</u> ngrounded
Trapped charge source

	Parameters	I ₀	$ au_1$	$ au_2$	n	I	$ au_1$	$ au_2$	n
	First stroke	28	1.8	95	2				
1	Subsequent stroke	10.7	0.25	2.5	2	6.5	2	230	2

Component: HEIDLER X							
Attributes	Attributes						
DATA	UNIT	VALUE		NODE		PHASE	NAME
Amplitude	Volt	10000		HEI		1	
T_f	s	1.2E-6					
tau	s	5E-5					
n		2					
Tstart	s	0					
Tstop	s	1000					
🖹 Copy 🖺 F	Paste 🝷 🗋 Re	eset Order	: 0		Labe	l:	
Comment:							
Type of source Current Voltage							
Edit definitions			<u>0</u> K			<u>C</u> ancel	Help

9

Como modelar funções mais complexas?

$$i(t) = \sum_{1}^{N} \frac{I_0}{\eta} \frac{(t/\tau_1)^n}{1 + (t/\tau_1)^n} (e^{-t/\tau_2})$$

Analytical Representation of Single- and Double-Peaked Lightning Current Waveforms

Alberto De Conti and Silvério Visacro, Member, IEEE

TABLE I PARAMETERS USED TO SYNTHESIZE FIRST NEGATIVE STROKE CURRENTS MEASURED AT THE MORRO DO CACHIMBO STATION a

		MCS	FST#1		MCS_FST#2				
k	I _{0k} (kA)	n_k	τ _{1k} (μs)	τ _{2k} (μs)	I _{0k} (kA)	n_k	τ_{Ik} (µs)	τ_{2k} (µs)	
1	6	2	3	76	6	2	3	76	
2	5	3	3.5	10	5	3	3.5	10	
3	5	5	4.8	30	5	5	4.8	30	
4	8	9	6	26	8	9	6	26	
5	22	21	7	23.2	16.5	30	7	23.2	
6	20	2	70	200	17	2	70	200	
7	-	-	-	-	12	14	12	26	

^a To obtain the curve MCS_FST#3 of Fig. 2(a), simply make Io = 0 in the curve MCS_FST#2.

Colocar a fonte de corrente

⇒

^a To obtain the curve MCS_FST#3 of Fig. 2(a), simply make I = 0 in the curve MCS_FST#2

Linhas de transmissão trifásicas

Impedância interna-Efeito Skin

2004). A resistência efetiva juntamente com a reatância indutiva interna resulta na impedância interna $Z_{int}(\omega)$ de uma LT. Para seu cálculo, para um condutor sólido e cilíndrico, empregam-se as funções de Bessel de primeira ordem, dada por (GATOUS, 2005):

$$Z_{int}(\omega) = j \frac{\omega\mu}{2\pi r} \left[\frac{ber(u) + jbei(u)}{(\frac{\sqrt{2}}{m})ber'(u) + jbei'(u)} \right] [\Omega/m]; \quad m = \sqrt{\frac{2\rho_c}{\omega\mu}} \quad [m]; \quad u = \frac{r\sqrt{2}}{m} \quad [m] \quad (2)$$

Na Eq. (2), $\omega = 2\pi f$ é a frequência angular [rad/s], f é a frequência da corrente alternada em [Hz], μ é a permeabilidade do condutor ($\mu = \mu_r \mu_0$) da qual $\mu_r = 1$ para condutores metálicos e μ_0 é permeabilidade magnética do vácuo $\mu_0 = 4\pi . 10^{-7}$ H/m. A variável m é a profundidade pelicular de penetração, ρ_c é a resistividade do condutor em [Ω .m], r é o raio do condutor [m], conforme mostrado na Figura 1-(a) e ber(u) e bei(u) são as funções modificadas de Bessel e as suas derivadas (ber'(u) e bei'(u)). Em um sistema de n fases, a impedância interna é escrita na forma matricial [$Z_{int}(\omega)$] ($n \times n$) formada apenas por coeficientes próprios na diagonal principal,

Impedância Externa

As correntes percorrem longitudinalmente os condutores de fase de uma dada LT e produzem um campo magnético variante no tempo e dependente da frequência angular da fonte de excitação. O campo magnético gerado por um dado condutor está concatenado com os condutores vizinhos, resultando em uma impedância externa $Z_{ext}(\omega)$. Em um sistema multifásico de *n* fases, a impedância externa é expressa na forma matricial $[Z_{ext}(\omega)]$ (*n*×*n*) cujos coeficientes próprios e mútuos dos condutores *i* e *j* são calculados por (MARTINEZ-VELASCO, 2009):

$$Z_{ext_{ii}}(\omega) = j\omega \frac{\mu_0}{2\pi} \ln\left(\frac{2h_i}{r_i}\right) [\Omega/m]; \qquad Z_{ext_{ij}}(\omega) = j\omega \frac{\mu_0}{2\pi} \ln\left(\frac{D_{ij'}}{d_{ij}}\right) [\Omega/m]$$
(4)

Sendo r_i o raio do condutor i [m], h_i a altura do condutor i em relação ao solo [m], d_{ij} a distância do condutor i ao condutor j [m] e $D_{ij'}$ a distância do condutor i a imagem do condutor adjacente j [m], conforme a Figura 1-(b).

Efeito Solo

O acoplamento magnético da linha com o solo é representado por impedâncias próprias e mútuas. Os elementos mútuos aparecem devido ao fato do solo não ser um condutor ideal. Por meio de diversos estudos, os efeitos do solo sobre os parâmetros longitudinais podem ser calculados por diferentes equações que podem ser aplicadas em LT aéreas (DOMMEL, 1996). As impedâncias próprias e mútuas de circuitos com retorno pelo solo são iguais às impedâncias próprias e mútuas para um circuito que envolve um solo ideal, acrescida de um termo de correção que é aplicável para as impedâncias (FUCHS, 1979). A impedância do solo em um sistema multifásico de *n* fases, é expressada na forma matricial [$Z_{solo}(\omega)$] ($n \times n$).

O termo de correção de Carson considera que os condutores da linha são infinitos e que a permissividade relativa do solo é 1. Esse termo foi denominado impedância do solo. Por consequência deste efeito as impedâncias próprias e mútuas são representadas como sendo:

$$Z_{solo}(\boldsymbol{\omega}) = \Delta R_{solo}(\boldsymbol{\omega}) + j\Delta X_{solo}(\boldsymbol{\omega}) \quad [\Omega/m]$$
(5)

Efeito Solo

Onde, $\Delta R_{solo}(\omega)$ é o fator de correção dos termos da resistência considerando o efeito do solo e $\Delta X_{solo}(\omega)$ é o fator de correção dos termos da indutância considerando o efeito do solo. Os termos de correção $\Delta R_{solo}(\omega)$ e $\Delta X_{solo}(\omega)$ são funções de um ângulo θ ($\theta = 0$ para impedâncias próprias, e $\theta = \theta_{ik}$ para impedâncias mútuas) e também de um parâmetro α definido como (DOMMEL, 1996):

$$\alpha(\omega) = 4\pi\sqrt{5}.10^{-4}D\sqrt{\frac{\omega}{2\pi\rho}} \tag{6}$$

Na Eq. (6), $D = D_{ij} = D_{ji}$ [m] para impedâncias mútuas Z_{ij} e Z_{ji} , $D = 2h_i$ [m] para a impedância própria Z_{ii} e $D = 2h_j$ [m] para a impedância própria Z_{jj} . Para $\alpha \le 5$, os termos de correção de Carson podem ser escritos como (DOMMEL, 1996):

$$\Delta R_{solo}(\omega) = 4\omega \cdot 10^{-4} \left\{ \frac{\pi}{8} - b_1 \alpha \cos \theta + b_2 [(c_2 - \ln \alpha)\alpha^2 \cos 2\theta + \theta \alpha^2 \sin 2\theta] + b_3 \alpha^3 \cos 3\theta - d_4 \alpha^4 \cos 4\theta - b_5 \alpha^5 \cos 5\theta + b_6 [(c_6 - \ln \alpha)\alpha^6 \cos 6\theta + \cdots) \right\}$$
(7)

$$\Delta X_{solo}(\omega) = 4\omega \cdot 10^{-4} \left\{ \frac{1}{2} (0,6159315 - \ln \alpha) + b_1 \alpha \cos \theta - d_2 \alpha^2 \cos 2\theta + b_3 \alpha^3 \cos 3\theta - b_4 [(c_4 - \ln \alpha)\alpha^4 \cos 4\theta + \theta \alpha^4 \sin 4\theta] + b_5 \alpha^5 \cos 5\theta - d_6 \alpha^6 \cos 6\theta + \cdots \right\}$$
(8)

Os coeficientes b_i , c_i e d_i das equações (7) e (8) são valores constantes que são obtidos utilizando as seguintes expressões:

$$b_i = |b_{i-2}| \frac{sign}{i(i+2)};$$
 $c_i = c_{i-2} + \frac{1}{i} + \frac{1}{i+2};$ $d_i = \frac{\pi}{4}b_i$ (9)

Energização de uma Linha de transmissão trifásica

$$h_{aver} = \frac{2}{3}h_{mid} + \frac{1}{3}h_{tower}$$

Co	Component: ACSOURCE X						
1	Attributes						
	DATA	UNIT	VALUE		NODE	PHASE	NAME
	AmplitudeA	Volt	10000		AC	1	
	Frequency	Hz	50		ACNEG	1	
	PhaseAngleA	degrees	0		Internal	1	
	StartA	sec	-1				
	StopA	sec	100				
	🖹 Copy 🖺 F	Paste 🝷 📄 Re	eset Order:	0	Lab	el:	•
0	Comment:						
	Type of source Num phases Angle units Amplitude Grounding Hige Current Single Degrees RMS L-G Grounded Floating Voltage 3*1-phase Seconds RMS L-L Floating						
	Edit definitions			<u>0</u> K		<u>C</u> ancel	Help

*?-

₽ _ _	Probes & 3-phase	۲	
‰¥	Branch Linear	×	
É	Branch <u>N</u> onlinear	×	⊷ ,⊠,⊷
¶°	Lines/Cables	۲	
-*-	S <u>w</u> itches	١.	Switch time <u>c</u> ontrolled
S	Sources	×	Switch time <u>3</u> -ph
⊛	M <u>a</u> chines	۲	Switch voltage contr.
∞	T <u>r</u> ansformers	۲	<u>D</u> iode (type 11)
.	MODELS	×	<u>V</u> alve (type 11)
1	TACS	×	T <u>r</u> iac (type 12)
F	User Specified	•	TACS switch (type 13)
ŕ	St <u>e</u> ady-state	×	<u>M</u> easuring
Compo	nent: SWIT_3XT		×

component: Sw.	11_371		-			^	
Attributes							
DATA	UNIT	VALUE		NODE	PHASE	NAME	
T-cl_1	s	-1		IN1	3		
T-op_1	s	1000		OUT1	3		
T-cl_2	s	-1					
T-op_2	s	1000					
T-cl_3	s	-1					
T-op_3	s	1000					
Imar	Amps	0					
Copy Paste Reset Order: Comment:							
Output Hige							
Edit definitions			<u>0</u> K		<u>C</u> ancel	Help	

5.7	
U)	
Υ.	
٠	

			1
9 ₃	Probes & 3-phase	•	Probe <u>V</u> oltage
-∿	Branch Linear	•	Probe <u>L</u> ine volt.
£	Branch Nonlinear	•	Probe <u>B</u> ranch volt.
₩.	Lines/Cables	•	Probe <u>C</u> urrent
×	Cuitabaa		Probe <u>T</u> ACS
-4-	Switches	<u> </u>	Probe MODELS
⊘	Sources	•	Probe Flux-linkage
∾	M <u>a</u> chines	•	COMTRADE
00	T <u>r</u> ansformers	•	Splitter (3 phase)
	MODELS	►	Collector
🏷	TACS	•	Transp1 ABC-BCA
¢.	User Specified	•	Transp <u>2</u> ABC-CAB
1Ž	St <u>e</u> ady-state	•	Transp <u>3</u> ABC-CBA
怒	Power system tools	•	Transp <u>4</u> ABC-ACB
E	All stan <u>d</u> ard comp		ABC Reference
	Add Objects	•	DEF Reference
_		-	

🕂 Open voltage probe	×
#Phases Monitor:	-Steady-state
3 📿 🖌 A-1	Enable
Hide C-3	
D-4	
E-5	
Node	
OK <u>H</u> elp	

⊷∕∕∕∕⊸

Energização de uma Linha de transmissão trifásica

Line/Cable Data: 500kV Model Data Nodes System type Iemplate Embed Name: 500kV Single ph. icon Overhead Line #Ph: 3 Length [Hz] 0.1 Transpose Set length in icon Set length in icon			>	<					ext		
✓ Auto bundling	Line/C	able Da	ata: 500kV								×
Skin effect	Mod	el [<u>)</u> ata <u>N</u> od	les							
Segmented ground		Ph.no.	Bin	Rout	Resis	Horiz	Vtower	Vmid	Separ	Alpha	NB
✓ <u>R</u> eal transf. matrix	#		[cm]	[cm]	[ohm/km DC]	[m]	[m]	[m]	[cm]	[deg]	
	1	1	0.4335	1.177	0.1181	-10.8	31.62	12.23	45.7	45	4
Туре ———	2	2	0.4335	1.177	0.1181	0	32.62	12.83	45.7	45	4
Bergeron	3	3	0.4335	1.177	0.1181	10.8	31.62	12.23	45.7	45	4
	4	0	0.36	0.67	0.724	9.05	42.25	23.7	0	0	0
JMarti Noda Semlyen Comment: Order: Label: CS-525 KV CAND-MELO 4XDOVE PR:1XACO3/8 E OPGW QK Cancel Import Export Run ATP View Verify	0 inc	dica d	o para-ra		tower		42.23	V _{mid}	his row		Vaver
	<u>o</u> k		Cancel	<u>I</u> mport	Export	Run <u>A</u> TP	Viev	<u>v</u>	erify	<u>E</u> dit defin.	Help

- Exemplo 8: Energização
- de uma Linha de transmissão trifásica

Energização tripolar da LT. Em t=0.05s fecha o interruptor e da origem ao transitório

Tempos distintos de chaveamento

– 🗆 X

	· · · · -	
DATA	UNIT	VALUE
T-cl_1	s	0.001
T-op_1	s	1000
T-cl_2	s	0.002
T-op_2	s	1000
T-cl_3	s	0.003
T-op_3	s	1000
Imar	Amps	0

Exemplo 10: Religamento monofásico em Linha de transmissão

Falta na fase A, e o interruptor nas subestações faz religamentos monopolares.

Exemplo 10: Descarga atmosférica em uma Linha de transmissão com para-raios

Pode se observar no gráfico que uma falta monofásica com Rfalta=5Ω, aplicada em fase A do ponto de transposição "falta1" em t=0.1s e elimina em t=0.2s;

Simulação de descargas atmosféricas em Torres de transmissão

Descarga atmosférica em uma Linha de transmissão com para-raios

Simulação de descargas atmosféricas em Torres de transmissão

Exemplo 11: Descarga atmosférica em uma Linha de transmissão com para-raios

