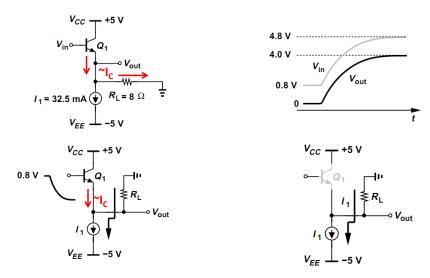
EE 530 Eletrônica Básica I

Amplificadores de Potência

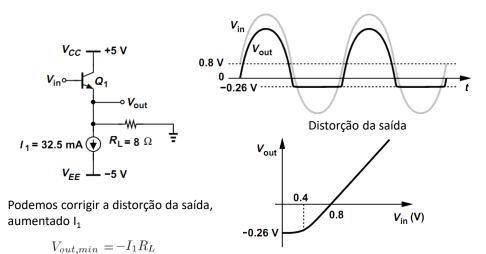
Amplificadores de Potência

- Motivação:
 - Até o momento nos preocupamos com o ganho de tensão e as impedâncias de entrada e saída;
 - Porém, muitas aplicações necessitam de circuitos que entreguem alta potência à carga:
 - Telefone celular (1W)
 - Amplificadores de aúdio (1000W)


- · Requisitos:
 - Distorção baixa para operação em grandes sinais;
 - Eficiência (η) alta: $\eta = P_{Load}/P_{source}$;
 - Níveis elevados de tensão ⇒ Tensão de ruptura maior;
 - Dissipação de grande quantidade de energia ⇒ aquecimento

Amplificadores com o TBJ

Coletor comum (Seguidor de Emissor)


$$v_{in} = R_{E} \begin{pmatrix} v_{\pi} \\ r_{\pi} \end{pmatrix} + v_{out} \begin{pmatrix} v_{in} \\ r_{\pi} \end{pmatrix} + r_{\pi} \begin{pmatrix} v_{\pi} \\ r_{\pi} \end{pmatrix} + v_{out} \begin{pmatrix} v_{in} \\ r_{\pi} \end{pmatrix} + r_{\pi} \begin{pmatrix} v_{\pi} \\ r_{\pi} \end{pmatrix} + r_{\pi} \begin{pmatrix} v_{\pi} \\ r_{\pi} \end{pmatrix} + r_{\pi} \begin{pmatrix} v_{out} \\ r_{\pi} \end{pmatrix}$$

• Seguidor de emissor (Z_{out} baixo)

Amplificadores de Potência

• Seguidor de emissor (Z_{out} baixo)

No entanto a eficiência cai.

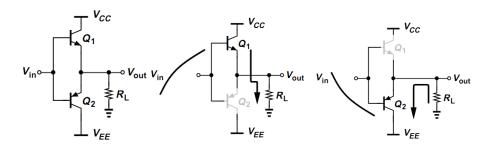
• Exemplo 13.1 - Razavi

$$- V_{\text{out}}? I_{\text{s}} = 5 \times 10^{-15} \text{A}; V_{\text{in}} = 0.5 \text{V};$$

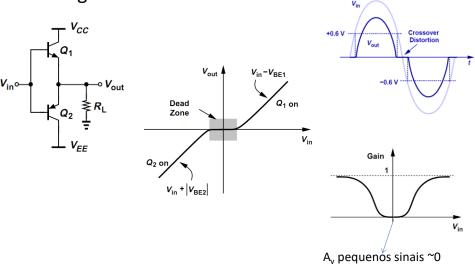
$$- V_{\text{in}}? I_{\text{C1}} = 1\% I_{1}$$

$$V_{cc} \longrightarrow ^{+5} \text{V}$$

$$V_{\text{in}} \sim V_{\text{out}}$$

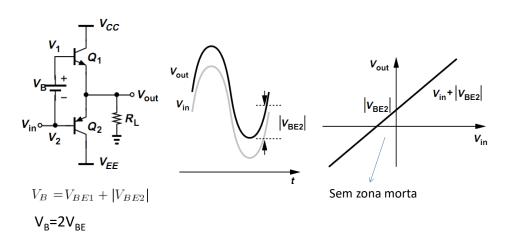

$$V_{in} = 0.5 V \Rightarrow V_{out} \approx -211 \text{mV}$$

$$V_{in} = V_{T} \ln \frac{I_{C1}}{I_{S}} + (I_{C1} - I_{1}) R_{L}$$

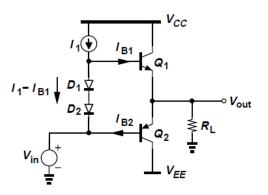

$$V_{in} = 0.01 I_{1} \Rightarrow V_{in} \approx 390 \text{mV}$$

Amplificadores de Potência

- Estágio Push-Pull
 - Um modo de aumentar I₁ somente quando necessário e melhorar o desempenho é utilizar o push-pull



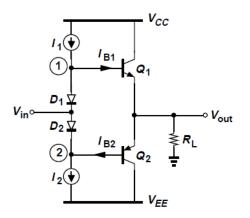
• Estágio Push-Pull



Amplificadores de Potência

• Estágio Push-Pull Aprimorado

• Estágio Push-Pull Aprimorado


$$I_{in} = I_1 - I_{B1} + |I_{B2}|$$

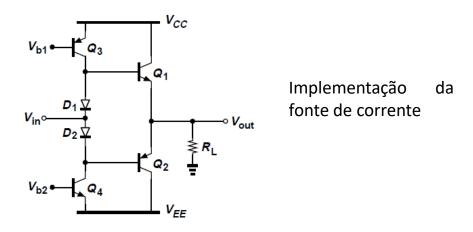
Se
$$V_{out}=0 \& \beta_1=\beta_2>>1$$

=> $I_{B1}=I_{B2}$

A fonte V_{in} tem que absorver as correntes

Amplificadores de Potência

• Estágio Push-Pull Aprimorado



$$V_{D1} \approx V_{BE} \rightarrow V_{out} \approx V_{in}$$

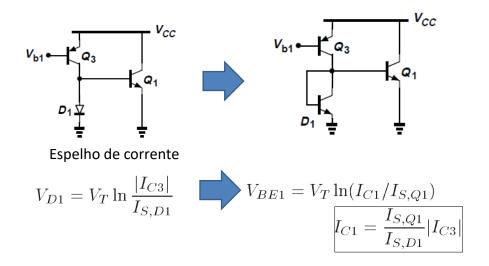
Se
$$I_1=I_2 \& I_{B1}\approx I_{B2}$$

 $\rightarrow I_{in}=0$ quando $V_{out}=0$

A fonte V_{in} não absorve corrente

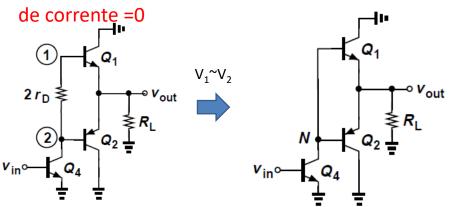
• Estágio Push-Pull Aprimorado

Amplificadores de Potência


 Adição do estágio emissor comum ⇒ maior ganho.

Corrente em Q_1 : Para $V_{out}=0$, $I_{C3}=I_{C4}$,

 $|V_{BE}| = V_{D}$, temos que $V_{x} = 0$

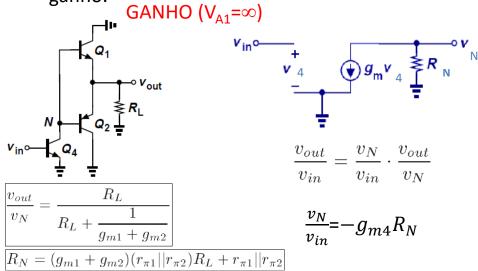

• Corrente em Q1

Amplificadores de Potência

 Adição do estágio emissor comum ⇒ maior ganho.

GANHO: Modelo de pequenos sinais, fonte

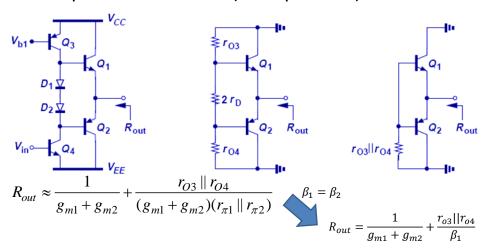
Adição do estágio emissor comum ⇒ maior


Amplificadores de Potência

• Adição do estágio emissor comum \Rightarrow maior ganho.

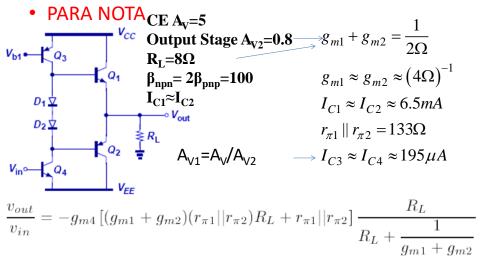
$$\begin{array}{l} \text{ganho.} & \\ \text{GANHO (V}_{\text{A1}} = \infty) \\ & \\ \frac{v_{out}}{R_L} = \frac{v_N - v_{out}}{r_{\pi 1} || r_{\pi 2}} + (g_{m1} + g_{m2})(v_N - v_{out}) \\ \\ \frac{v_{out}}{v_N} = \frac{1 + (g_{m1} + g_{m2})(r_{\pi 1} || r_{\pi 2})}{\frac{r_{\pi 1} || r_{\pi 2}}{R_L}} \\ \end{array}$$

$$\frac{v_{out}}{v_N} = \frac{R_L}{R_L + \frac{1}{g_{m1} + g_{m2}}} \left[R_N = (g_{m1} + g_{m2})(r_{\pi 1}||r_{\pi 2})R_L + r_{\pi 1}||r_{\pi 2}| \right]$$


 Adição do estágio emissor comum ⇒ maior ganho.

Amplificadores de Potência

• Adição do estágio emissor comum \Rightarrow maior ganho. GANHO ($V_{A1}=\infty$) $\frac{v_{out}}{v_{in}} = \frac{v_N}{v_{in}} \cdot \frac{v_{out}}{v_N}$ $\frac{v_N}{v_{in}} = -g_{m4}R_N$ $\frac{v_{out}}{v_{in}} = -g_{m4}[(g_{m1} + g_{m2})(r_{\pi 1}||r_{\pi 2})R_L + r_{\pi 1}||r_{\pi 2}] \frac{R_L}{R_L + \frac{1}{g_{m1} + g_{m2}}}$ $\frac{v_{out}}{v_{in}} = -g_{m4}(r_{\pi 1}||r_{\pi 2})(g_{m1} + g_{m2})R_L$


Impedância de saída (Exemplo 13.9) Para casa

O β é pequeno em transistores de potência, aumentando R_{out} Problema para R_{L} baixo

Amplificadores de Potência

• Exemplo 13.10- Encontrar as correntes I_C

CH 13 Output Stages and Power Amplifiers

Fontes de figuras da aula

- Aula do prof. Fabiano Fruett
- Fundamentos de Microeletrônica (Razavi)

Prof. Pedro Xavier

Sugestão de estudo

• Razavi, cap. 13

Prof. Pedro Xavier