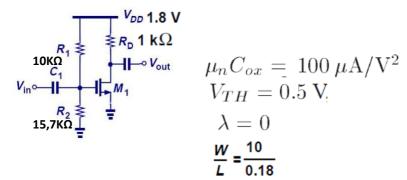
EE 530 Eletrônica Básica I

AMPLIFICADORES CMOS

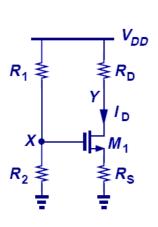
Prof. Pedro Xavier


Polarização

- Existem várias técnicas de polarização, vamos estudar duas:
 - Polarização por divisor resistivo
 - Autopolarização
- OBS: O transistor deve estar polarizado na região de saturação para funcionar como amplificador.

Prof. Pedro Xavier

Exercício


A_v?; z_{in}?; z_{out}?; limites v_{in}?

Prof. Pedro Xavie

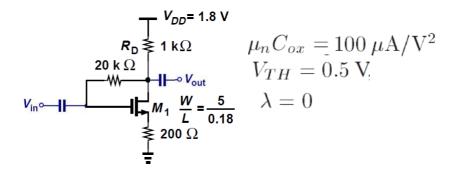
Polarização

Polarização por divisor resistivo

$$V_{X} = \frac{V_{DD}}{R_{1} + R_{2}} R_{2}$$

$$V_{GS} = V_{X} - I_{D}R_{S}$$

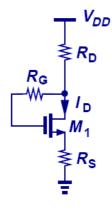
$$\begin{cases} V_{GS} = \frac{V_{DD}}{R_{1} + R_{2}} R_{2} - I_{D}R_{S} \\ I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} [(V_{GS} - V_{TH})^{2}] \end{cases}$$


$$V_{GS} = -(V_{1} - V_{TH}) + \sqrt{V_{1}^{2} + 2V_{1}} \left(\frac{R_{2}V_{DD}}{R_{1} + R_{2}} - V_{TH}\right)$$

$$V_{1} = \frac{1}{2} \frac{1}{2} V_{1} \left(\frac{R_{2}V_{DD}}{R_{1} + R_{2}} - V_{TH}\right)$$

$$V_{1} = \frac{1}{2} V_{1} \left(\frac{R_{2}V_{DD}}{R_{1} + R_{2}} - V_{TH}\right)$$
Prof. Pedro XavKeth $C_{OX} = \frac{W}{L} R_{S}$

Exercício para nota


• A_v?; z_{in}?; z_{out}?; limites v_{in}?

Prof. Pedro Xavier

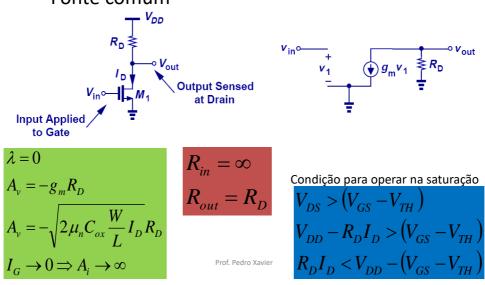
Polarização

Autopolarização

$$I_{G} = 0 \Rightarrow V_{D} = V_{G} \Rightarrow V_{DS} = V_{GS}$$

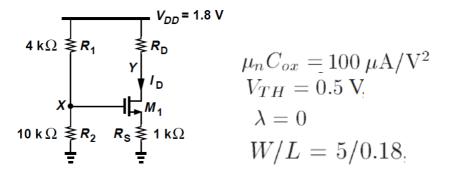
$$V_{DS} = V_{GS} = V_{DD} - I_{D}R_{D} - I_{D}R_{S}$$

$$V_{GS} = V_{DD} - I_{D}(R_{D} + R_{S})$$


$$V_{GS} = V_{DD} - I_{D}(R_{D} + R_{S})$$

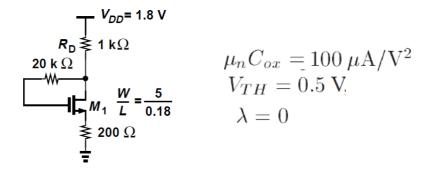
$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH})^{2} \right]$$

Prof. Pedro Xavier

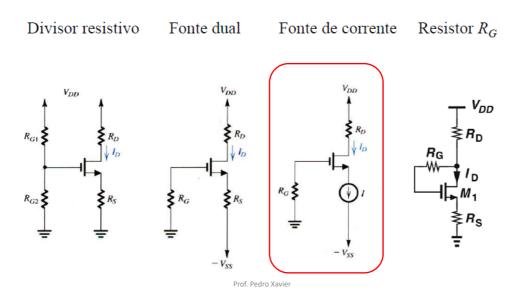

Configurações básicas de amplificadores MOS

• Fonte comum

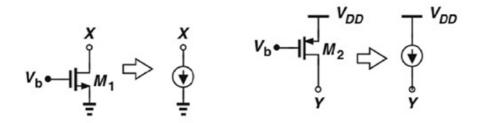
Exemplo 7.1 RAZAVI


Máximo R_D para saturação?

Prof. Pedro Xavier

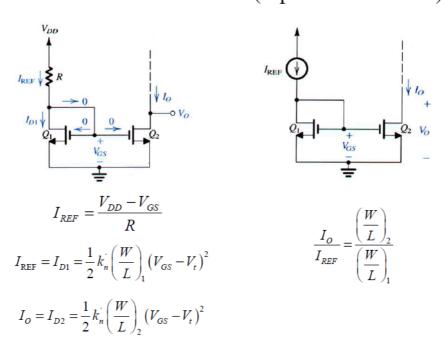

Exemplo 7.3 RAZAVI

• Valor de R_D para $I_D = I_D/2$?



Prof. Pedro Xavier

Polarização de circuitos amplificadores MOS


Realização de Fontes de Corrente

OBS: Para esta aproximação, devemos garantir que o transistor opere na região de saturação

Prof. Pedro Xavier

Fonte de corrente básica (espelho de corrente)

Fontes de figuras da aula

- Aula do prof. Fabiano Fruett
- Fundamentos de Microeletrônica (Razavi)
- Microeletrônica (Sedra)

Prof. Pedro Xavier

Sugestão de estudo

- · Razavi, cap. 7
- Sedra/Smith cap. 5 seções 5.4 até 5.6
 - Exemplos, exercícios e problemas correspondentes

Para saber mais:

Paul R. Gray e Robert G. Meyer, Analysis and Design of Analog integrated Circuits, John Wiley & Sons

T. Tsividis, Design considerations in single-chanel MOS analog integrated circuits – A tutorial", IEEE JSSC SC 13, pp 383-391, junho de 1978