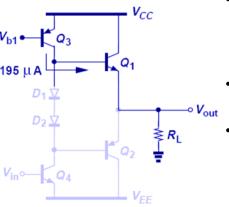
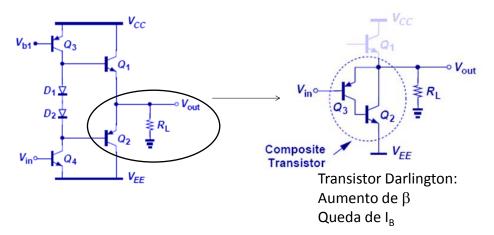

EE 530 Eletrônica Básica I

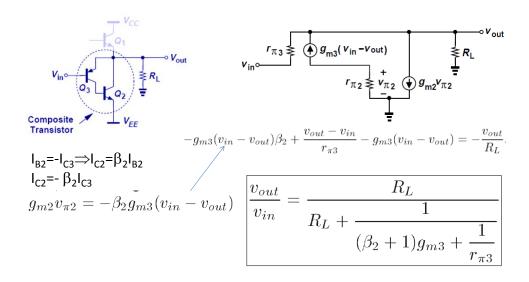
Amplificadores de Potência


Amplificadores de Potência

• Impedância de saída (Exemplo 13.9) Para casa

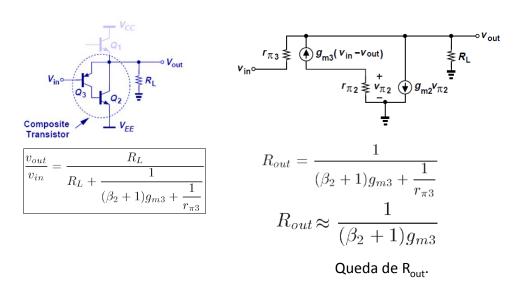
O β é pequeno em transistores de potência, aumentando R_{out} Problema para R_L baixo


• Exemplo de polarização

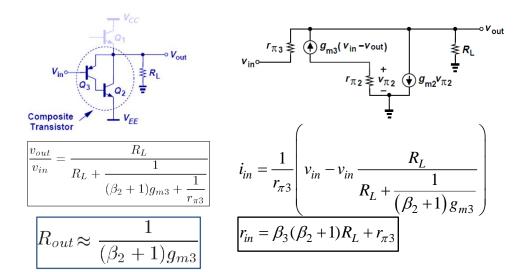

- I_{C1max} ocorre quando Q_4 não conduz e I_{B1} = I_{C3} =195 μ A, portanto I_{C1max} = 19,5 mA.
- V_{out max}=0,156V. Valor baixo.
- Um agravante é que o transistor de alta potência tem um β baixo (~20).
- A corrente da fonte de corrente Q3 deve ser maior.

Amplificadores de Potência

- Transistor PNP de potência
- O transistor PNP de potência tem baixo ganho de corrente e baixa f_T.
- A saída é combinar um transistor PNP com um NPN.

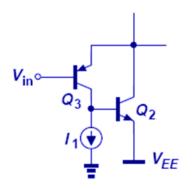


Transistor PNP de potência

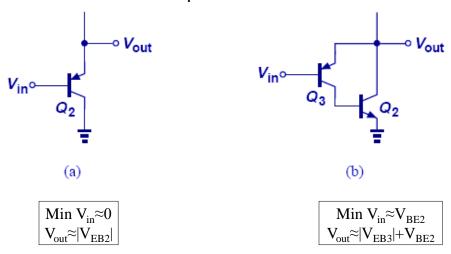


Amplificadores de Potência

• Transistor PNP de potência

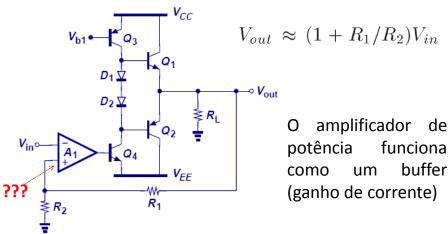


• Transistor PNP de potência

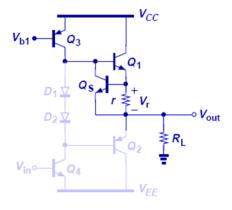

Amplificadores de Potência

• Transistor PNP de potência

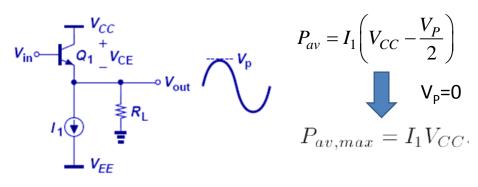
 I_1 é adicionado à base de Q_2 para fornecer uma corrente de polarização adicional a Q_3 , assim a capacitância na base do Q_2 pode ser carregada / descarregada rapidamente


• Transistor PNP de potência

Amplificadores de Potência

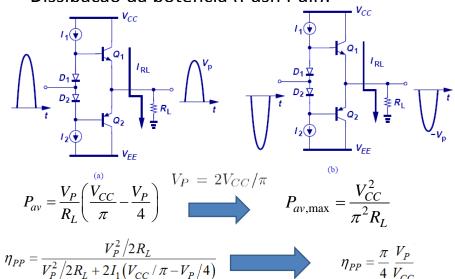

- Distorção:
 - As corrente do estágio push pull variam consideravelmente;
 - Portanto, as transcondutâncias também variam;
 - E o amplificador não é linear, ocorre distorção do sinal de saída. O que é inadmissível em muitos casos.

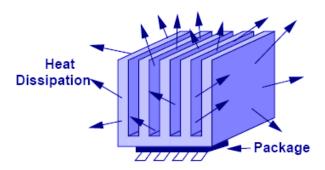
- Distorção:
 - Uma forma de diminuir a distorção é utilizar uma realimentação negativa.



Amplificadores de Potência

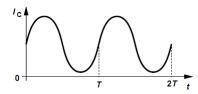
- Proteção contra curto circuito:
 - A medida que V_r se aproxima de 0,7 V, I_{CS} aumenta;
 - $-I_{B1}$ diminui $\Rightarrow I_{C1}$ diminui


• Dissipação da potência (Seguidor de Emissor):


$$\eta = \frac{P_{out}}{P_{out} + P_{ckt}} \implies \eta_{EF} = \frac{V_P^2 / 2R_L}{V_P^2 / 2R_L + I_1 (2V_{CC} - V_P / 2)} \implies \eta_{EF} = \frac{V_P}{4V_{CC}}$$

Amplificadores de Potência

• Dissipação da potência (Push Pull):



- O tamanho dos transistores é muito pequeno;
- Prejudicando a dissipação de calor;
- A saída é a utilização de um dissipador de calor, que aumenta a área de contato com o meio.

Amplificadores de Potência

• Classes:

- 0 T 27 t

- Classe A: o transistor conduz todo o ciclo:
 - Distorção baixa
 - Baixa eficiência (25%)
- Classe B: o transistor conduz metade do ciclo:
 - Distorção grande
 - Boa eficiência (75%)
- Classe AB: o transistor conduz mais da metade do ciclo:

Fontes de figuras da aula

- Aula do prof. Fabiano Fruett
- Fundamentos de Microeletrônica (Razavi)

Prof. Pedro Xavier

Sugestão de estudo

• Razavi, cap. 13

Prof. Pedro Xavier