

IA753 Análise de Sinais Biológicos

Programa da Disciplina

Informações Gerais

Docente Responsável: Leonardo Abdala Elias | E-mail: leoelias@unicamp.br

Semestre Letivo/Ano: 2/2019 | Turma: A | Carga Horária: 60h | Créditos: 4

Aulas: Quintas (14:00h – 18:00h) | **Sala:** PE-33

Atendimentos extraclasse: 29/08, 19/09 e 31/10 (09:00h – 12:00h) | Local: CEB/UNICAMP

Calendário

Aula	Data	Tema da Aula	
1	01/08/2019	Introdução e motivação da disciplina. Critérios de avaliação. Bibliografia.	
2	08/08/2019	Origem dos biopotenciais elétricos. Sinais neurais (EEG, EMG e potenciais evocados)	
3	15/08/2019	Sinais cardíacos (ECG, fonocardiograma e o pulso de pressão). Introdução à análise de sinais (sinais elementares e transformação de variáveis).	
4	22/08/2019	Sinais e sistemas em tempo contínuo. A série de Fourier em tempo contínuo.	
		Divulgação do primeiro trabalho computacional	
5	29/08/2019	A transformada de Fourier em tempo contínuo. A série de Fourier em tempo discreto.	
6	12/09/2019	A transformada de Fourier em tempo discreto. Transformadas de Laplace e Z.	
7	26/09/2019	Condicionamento de sinais biológicos (amplificação e filtragem analógica). Amostragem e quantização de sinais.	
8	03/10/2019	Projeto de filtros digitais para rejeição de artefatos e interferências em sinais biológicos.	
9	10/10/2019	Revisão sobre teoria da probabilidade e variáveis aleatórias.	
10	17/10/2019	Introdução a processos estocásticos. Variabilidade e estacionariedade de sinais biológicos. Média síncrona e média móvel.	
		Divulgação do segundo trabalho computacional	
11	24/10/2019	Análise de autocorrelação e correlação cruzada entre processos fisiológicos.	
12	31/10/2019	Estimação da densidade espectral de potência de processos fisiológicos.	
13	07/11/2019	Análise de coerência entre processos fisiológicos.	

Datas Importantes

Primeira Prova: 05/09/2019
Segunda Prova: 14/11/2019

• Prova Final (Substitutiva): 12/12/2019

• Entrega do 1º Trabalho Computacional: 24/10/2019

• Entrega do 2º Trabalho Computacional: 06/12/2019

Critérios de Avaliação

Esta é uma disciplina presencial, portanto, o primeiro critério para aprovação é ter cumprido pelo menos 75% da carga horária da disciplina, ou seja, 11 aulas. Será considerado *Reprovado por Falta* o aluno que possuir 4 ou mais faltas ao longo do semestre letivo.

A avaliação do conteúdo do curso será feita por meio de duas provas teóricas e dois trabalhos computacionais. As provas serão individuais, sem consulta e com duração de 4 horas (1 aula). As instruções e os critérios de correção dos trabalhos computacionais serão apresentados nas datas pré-estabelecidas (vide Calendário), garantindo-se tempo hábil para que todos tenham condições de realizar as tarefas. Testes extras poderão ser apresentados ao longo do curso, tanto nas aulas presenciais quanto através do sistema de gestão online da disciplina (Google Classroom) como forma de complementar o aprendizado. A estes testes poderão, a critério do docente, ser atribuídas notas que serão acrescidas na nota final do estudante. Esta disciplina não prevê exame final.

A Nota Final (NF) será calculada pela seguinte equação:

$$NF = 0.5 \times \bar{P} + 0.5 \times \bar{C}$$

em que, \bar{P} é a média aritmética das duas provas teóricas e \bar{C} é a média aritmética dos dois trabalhos computacionais.

Conceitos

Conceito	NF	Situação
\mathbf{A}	[10.0, 8.5]	Aprovado
В]8.5, 7.0]	Aprovado
C]7.0, 5.0]	Aprovado
D]5.0, 0]	Reprovado
${f E}$	N/A	Reprovado por Falta

Bibliografia Recomendada

- [1] Rangayyan R. M. Biomedical signal analysis, 2nd ed. Hoboken: John Wiley & Sons, 2015.
- [2] Oppenheim A. V., Willsky A. S., Nawab S. H. Sinais e sistemas, 2ª ed. São Paulo: Pearson, 2010.
- [3] Geromel J. C., Deaecto G. S. Análise linear de sinais: Teoria, ensaios práticos e exercícios, São Paulo: Blucher, 2019.
- [4] Oppenheim A. V., Schafer R. V. Processamento em tempo discreto de sinais, 3ª ed. São Paulo: Pearson, 2013.
- [5] Peebles P. Z. Probability, random variables, and random signal principles, 4th ed. New Delhi: McGraw-Hill, 2002.
- [6] Kay S. M. Intuitive probability and random processes using MATLAB, New York: Springer, 2006.
- [7] Papoulis A., Pillai S. U. *Probability, random variables and stochastic processes*, 4th ed. New York: McGraw-Hill, 2002.
- [8] Bendat J. S., Piersol A. G. Random data: analysis and measurement procedures, 4th ed. New York: John Wiley & Sons, 2010.
- *Além das referências listadas acima, diversos temas serão baseados em artigos publicados em periódicos especializados.