Lesson 3

Digital Control of Three-Phase DC/AC Converters: Current Control Techniques

Linear Current Control

October 1999

Simone Buso - University of Padova - Lesson 3

Current Sensing

- Current sensing is normally not a troublesome part of the control design. Several solutions can be adopted:
 - resistive shunts;
 - current transformers;
 - LEM (Hall effect based) sensors.
- In DC/DC converter applications, resistive shunts or current transformers, if isolated sensing is required, are the preferred, costdriven choices.

October 1999

Simone Buso - University of Padova - Lesson 3

Current Sensing

- In VSI's applications (such as drives, rectifiers, UPS's), the cost of three (or two if the system has only three wires) Hall effect sensors is normally reasonable.
- This solution greatly simplifies the design of the current control system, providing isolated and relatively large bandwidth (* 100 kHz) current sensing.
- Only simple filtering (high frequency noise) and level adjusting circuitry (to get A/D converter compatible voltage ranges) are normally required.

October 1999

Simone Buso - University of Padova - Lesson 3

Linear Current Control

- The simplest way of achieving current regulation in a DC/AC or AC/DC power converter is to employ linear regulators (usually of PI type).
- The design and digital implementation of such regulators is quite straightforward and normally effective, unless demanding static and dynamic performance specifications are given for the current loop.
- Some basic guidelines can be given for a successfull implementation.

October 1999

Simone Buso - University of Padova - Lesson 3

Linear Current Control

Typical control set-up

October 1999

Simone Buso - University of Padova - Lesson 3

Control Design

- The choice of the controller (and its design) in general depends on the particular converter load.
- It is very common that the dynamic behaviour of the load, in the typical frequency range of interest for current control design, is almost purely inductive.
- Possible capacitive filters (e. g. in UPS applications) normally exhibit a negligible impedance in the vicinity of the switching frequency.

October 1999

Simone Buso - University of Padova - Lesson 3

Typical Inverter Loads

Can represent both a drive or an active filter application or rectifier (with a suitable choice of the model parameters).

Represents the typical UPS application.

October 1999

Simone Buso - University of Padova - Lesson 3

Design Example

C = 100 mF,

R = 0.1 W

L = 2 mH

 $V_{dc} = 400 V$ $f_{sw} = 10 \text{ kHz}$

October 1999

Simone Buso - University of Padova - Lesson 3

Typical Inverter Loads

In the area around the possible current loop cross-over frequency the inverter load is 'seen' as almost purely inductive.

The controller design can be very simple.

L - C load (UPS)
R - L load (drives)
Purely inductive load

October 1999

Simone Buso - University of Padova - Lesson 3

0

Control Design

- The typically adopted controller structure is the proportional-integral (PI).
- The design of the controller parameters (proportional and integral gains) is straightforward in the continous time domain.
- The discretization of the controller can be easily performed as the final step, according to one of the various integration methods (e.g. Euler or trapezoidal integration).
- There is normally no reason to consider more sofisticated approaches.

October 1999

Simone Buso - University of Padova - Lesson 3

A simple procedure to design a PI regulator can be the following (continuous time domain):

Set the proportional gain k_p to:

$$k_p = 2 \cdot w_{cr} \cdot L / V_{dc}$$

to get the desired cross-over frequency w_{cr};

• Set the integral gain k, to:

$$k_i = k_p \cdot w_{cr} / tan(m_f)$$

so as to get the desired phase margin me

The gain of the power converter is assumed to be $V_{dc}/2$ (no PWM delay effect) and the load to be purely inductive. Transducer gains are not taken into account.

October 1999

Simone Buso - University of Padova - Lesson 3

1.1

Control Design

- It is important to take into account, even at this early stage of the design, that the final controller is going to be digitally implemented.
- In particular, the delay of the sample and hold (@T/2, where T is the sampling period) must be considered designing the continuous time controller.
- The required phase margin has to be oversized to cope with such delay. A rule of thumb is to increase m_f by at least 20° (for a control crossover frequency about a decade lower than the sampling one).

October 1999

Open loop gain for the considered example with the suggested design.
Almost the same crossover frequency and phase margin is

achieved.

L - C load (UPS)

R - L load (drives)

Purely inductive load

October 1999

Simone Buso - University of Padova - Lesson 3

13

Control Design

Closed loop step response for the considered example with the suggested design.
Almost the same

Almost the same performance is achieved in the three cases.

L - C load (UPS)

R - L load (drives)

Purely inductive load

October 1999

Simone Buso - University of Padova - Lesson 3

- The continuous time controller must be turned into an equivalent dicrete time controller;
- This can be easily done by substituting continuous integrators with discrete ones, according to any discrete time integration method;
- Using Euler's integration method, this is equivalent to set:

 $s = (1-z^{-1})/T$ T = sampling period, in the original controller's Laplace transform.

October 1999

Simone Buso - University of Padova - Lesson 3

15

Control Design

• In the case of a PI controller, this is equivalent to the following block diagram:

where $k'_1 = k_i \cdot T$ (sampling period).

October 1999

Simone Buso - University of Padova - Lesson 3

 The block diagram directly leads to the following implementation of the digital PI regulator:

$$y(k) = k_{p} \cdot u(k)$$

 $i(k) = i(k-1) + k'_{i} \cdot u(k)$
 $y(k) = y(k) + i(k)$

which normally requires only a few clock cycles to be calculated (2 products and 2 sums).

October 1999

Simone Buso - University of Padova - Lesson 3

1.5

Control Design

- It is important to notice that this procedure is approximated. The discretization process 'warps' the frequency response of the controller, especially for frequencies which are close to the sampling frequency.
- As a rule of thumb, at least a decade must be taken between the sampling frequency and the highest frequency of interest (normally the loop cross-over frequency).
- If the specs require a less conservative design, different synthesis strategies ought to be considered.

October 1999

Simone Buso - University of Padova - Lesson 3

Switching Frequency / Sampling Frequency

- The current waveforms in VSI's exhibit a significant high frequency harmonic content due to the PWM modulation (ripple).
- The current control loop is normally needed to control the average value of the converter's currents.
- Sampling at very high frequencies to reconstruct the complete current waveform (including the ripple) is therefore not necessary.

October 1999

Simone Buso - University of Padova - Lesson 3

19

Switching Frequency / Sampling Frequency

- On the other hand, sampling at high frequencies increases the achievable current loop bandwidth.
- Therefore, a simple or double sampling per modulation period is normally adopted.
- The basic idea is that sampling and switching must be synchronized to avoid errors.
- Currents are typically sampled at the beginning and in the middle of the modulation period.

October 1999

- Continuos time synthesis and successive discretization is a simple, but approximate, procedure, requiring particular caution in the design of the closed loop bandwidth.
- In general, the design is more conservative than direct digital design.
- Sampling frequency does not need to be much higher than the switching frequency: practically the former is set equal to or twice the latter.
- It is fundamental that sampling and switching are synchronized to avoid aliasing errors.

Control Design Time domain simulation with PWM modulation

October 1999

Simone Buso - University of Padova - Lesson 3

23

Control Design

- The overshoot is due to the integral part of the controller, which gets "overcharged" during the saturated mode of operation. This has no relation with the open loop phase margin.
- As a consequence, a negative error will be needed to remove the accumulated positive error. This generates the overshoot.
- A good solution to this problem is the so-called anti wind-up action.
- This basically consists in the dynamic saturation of the integral part of the controller.

October 1999

Simone Buso - University of Padova - Lesson 3

Modified Pl controller with anti wind-up action. The control now is non-linear. Note the position of the saturation function.

$$|L(k)| = Y_{\text{max}} - |k_p \cdot u(k)|$$

In any control cycle, the dynamic saturation limit L is calculated, so as to keep the control's output y within the limit Y_{max} .

October 1999

Simone Buso - University of Padova - Lesson 3

25

Control Design Time domain simulation with PWM modulation

The controller's response is now free of overshoot. The control action is purely proportional until saturation is over.

October 1999

Simone Buso - University of Padova - Lesson 3

Three Phase Implementation

- The control of three-phase VSI's requires, in general, three indipendent, but normally identical, current controllers.
- If the neutral is not connected, currents are not indipendent, and therefore it is possible to control only two currents out of three.
- It is therefore also possible to:
 - ✓ use Park's transformation to move from the a, b, c to the a, b fixed reference frame;
 - ✓ use d, q rotating reference frame.

October 1999

Simone Buso - University of Padova - Lesson 3

0.5

Three Phase Implementation

- The use of d, q rotating reference frame is quite common in adjustable speed drive applications to simplify the dynamics of the electrical machine.
- It can also be used in rectifier, UPS or active filter applications of VSI's. The advantage is the possibility of controlling very precisely the fundamental component of any variable.
- In any case, the d, q transformation modifies the dynamic equations of the system. This must be considered in the controller's design.

October 1999

- In the following, an implementation example will be given with a fixed point DSP.
- The employed system is the so-called VeCon system manufactured, but not sold on the market, by a consortium of european companies, such as Siemens and ABB.
- In the early 90's, when this system first became available, it represented the first DSP system specifically designed for power converters' control tasks.

October 1999

Simone Buso - University of Padova - Lesson 3

29

Implementation Example

Structure of the VeCon System

October 1999

Simone Buso - University of Padova - Lesson 3

C165 microcontroller:

- 16-bit CPU with extended instruction set (compared to 80C166)
- 16 Mbyte address space
- 2 kbyte RAM
- 32 interrupt sources (8 @ 50ns sampling rate)
- 8 peripheral event controllers
- asynchronous\synchronous interfaces

October 1999

Simone Buso - University of Padova - Lesson 3

0.1

Implementation Example

VeCon DSP:

- 20 MHz clock
- ALU with three 32-bit registers for arithmetic operations
- 16*16 bit multiplier for signed fractional multiplication (MACL: 100ns)
- 1024 24-bit locations internal program memory
- two data memories each with 128 16-bit locations

October 1999

Simone Buso - University of Padova - Lesson 3

Peripheral Units:

- Position sensor evaluation
- Inverter triggering (PWM)
- Interface to Analog Chip
- Synchronous serial interface

October 1999

Simone Buso - University of Padova - Lesson 3

3:

Implementation Example

The analog ASIC includes:

- 3 12-bit 10ms A/D converters each with 4 multiplexed inputs
- 7 comparators to check input signals sign
- 4 hysteresis comparators to check overcurrent condition
- 6-bit D/A converters to set overcurrent limit
- 4 additional sample & hold circuits

Analog to Digital Conversion Unit

October 1999

Simone Buso - University of Padova - Lesson 3

35

Implementation Example

- The program calculates the current references in the **a**, **b** reference frame. This reduces the number of accesses to the sin(x) look-up table.
- The current control is performed on the a, b, c reference frame and, consequently, **a**, **b** a, b, c transformation is used.
- Two PI controllers are used to implement the current regulation (3 wires).
- Post processing of the duty-cycles with third harmonic injection is used to implement SVM.

October 1999

Simone Buso - University of Padova - Lesson 3

```
Alfa-Beta Current Reference Generation
     MOVE
                 X1,INCREM; Load increment
     MOVE
                 A1,THETA ; Load current result in the
                            ; accumulator
     ADD A1,X1
                            ; Sum THETA + INCREM and
     MOVE
                 THETA,A1 ; move the result in THETA
SIN
     MOVE
                 X0,THETA ; Calculate sin
     TAB SINTAB,7
     MOVE
                 IA_REF,A1 ; Store it in IA_REF=Sin(THETA)
                 A1,THETA ;
     MOVE
     MOVE
                 X1,HALF
                            ; THETA + 90 degrees
                 A1,X1
     ADD
     MOVE X0,A1
     TAB SINTAB,7
     MOVE
                IB_REF,A1 ; IB_REF=Sin(THETA+90)
October 1999
                 Simone Buso - University of Padova - Lesson 3
```

Implementation Example

```
Alfa-Beta -> U,V,Z Transform
TRSF23
    MOVE
                    X1,TWO_THIRDS ;
    MOVE
                    Y1,IA_REF
    MUL X1,Y1
                    X0,SIN_60
    MOVE
                    IU REF,A1
                                    ; IU_REF = 2/3*IA_REF
    MOVE
                    Y0,IB_REF
    MUL X0,Y0
    MOVE
                    X0,A1
    MUL X0,X1
                    Y0,SIN_30
    MOVE
                    X0,A1
    MOVE
                    Y1,IU_REF
    MUL Y0,Y1
    ADD -A1,X0
    MOVE
                    IV_REF,A1
                                    ; IV_REF = 1/SQRT(3)*IB_REF
                                              -1/3*IA_REF
```

Simone Buso - University of Padova - Lesson 3

```
PI_U
                                   ; PI phase U
    MOVE
                       X1,IU ANA
    MOVE
                       A1,IU_RF
    SUBL
                       A1,X1
    MOVE
                       ERROR,A1; Control input variable
    MOVE
                                   ; Proportional gain
                       Y1,KPU
    MOVE
                       X1,A1
    MUL X1,Y1
                       X0,UCOMP ; Proportional part OK
    ADDL A1,X0
                       X0,LIMPOS ; Feed-forward compensation
    LIMS A1,X0
                       Y0,LIMNEG;
    LIMI
           A1,X0
                       PROPU,A1; Anti wind-up for the
    MOVE
                       A,INTEGU
                                    integral part
    MOVE
                       Y1,KIU
    MACL X1,Y1
                       X1,PROPU
    LIM
           X0,Y0
    ADDL A1,X1
                       INTEGU,A
                                    N.B. The move is executed
                                   : before the add
    MOVE
                       UREF,A1
                                  ; end PI phase U
                   Simone Buso - University of Padova - Lesson 3
 October 1999
                                                              39
```

Implementation Example

```
MODULA
                               ; SVM part of the program
      MOVE
                   Y0,UREF
      MOVE
                   Y1,VREF
      HAR3
      MOVE
                   Y1,A1
                   THIRD,Y1
      MOVE
      Switching instants
                   X0,MODE_U; Load PWM mode
      MOVE
      MOVE
                   Y1,THIRD ; Calculate 'third harmonic'
      MOVE
                   Y0,TMOD_1; Limit to TMOD - 1 (PWM)
      MOVE
                   A1,UREF
                             ; Load voltage reference
      MOVE
                   X1,TMOD_2;
                              ; Load third harmonic
      ADD
                   A1,Y1
      PWM
                   A1,X1
                               ; Calculate instant TU1
      LIMU
                   A1,Y0
                              ; Limit TU1 to TMOD 1
                              ; Store the result
      MOVE
                   TU1,A1
October 1999
                  Simone Buso - University of Padova - Lesson 3
```

References

- [1] L. Rossetto, L. Malesani, P. Tenti, S. Buso, A. Pollmann: "Fully Digital Control of a Three Phase UPS by VeCon Integrated Controller" IEEE Industry Applications Society (IAS) Annual Meeting, Orlando, October 8-12, 1995, pp. 2663-2669.
- [2] E. Kiel and W. Schumacher, "VeCon: A High-Performance Single-Chip-Servocontroller for AC Drives", IPEC Conf. Proc., 1995, pp. 1284-1289.

October 1999

Simone Buso - University of Padova - Lesson 3