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Basic motivations

Digital control offers the possibility to implement sophisticated control laws, 

taking care of system non linearities, parameter variations or construction 

tolerances by means of self-analysis and auto tuning strategies, very difficult or 

impossible to implement analogically. 

Software based digital controllers are inherently flexible, which allows the 

designer to modify the control strategy, or even to totally re-program it, without 

the need for significant hardware modifications. Also very important are the 

higher tolerance to signal noise and the complete absence of ageing effects or 

thermal drifts.

A large variety of electronic devices, from home appliances to industrial 

instrumentation, require the presence of some form of man to machine interface 

(MMI). Its implementation is almost impossible without having some kind of 

embedded microprocessor. The utilization of the computational power, that thus 

becomes available, also for lower level control tasks is often very convenient. 
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Basic motivations

The application of digital controllers has been increasingly spreading and has 

become the only effective solution for a lot of industrial power supply production 

areas. Adjustable speed drives (ASDs) and uninterruptible power supplies 

(UPSs) are nowadays fully  controlled by digital means.

The increasing availability of low cost, high performance microcontrollers and 

digital signal processors stimulates the diffusion of digital controllers in areas 

where the cost of the control circuitry is a critical issue, e.g. in power supplies for 

portable equipment, battery chargers, electronic welders ...

A significant increase of digital control applications in these very competing 

markets is not likely to take place until new implementation methods, different 

from the traditional microcontroller or DSP unit  application, prove their viability. 

From this standpoint, the research efforts need to be focused on the design of 

custom integrated circuits, more than on algorithm design and implementation. 

Issues like occupied area minimization, scalability, power consumption 

minimization, limit cycle containment play a key role in this context. 
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Several different circuit topologies and related digital controllers could be 

considered: what we are going to do, instead, is to consider just a single, simple 

application example, i.e. the half bridge voltage source inverter.

The principles of its more commonly adopted low level control strategy, namely 

Pulse Width Modulation (PWM), will be explained, at first in the continuous time 

domain, successively in the discrete time domain.

The issues related with PWM control modelling are fundamental for the correct 

formulation of a Switch Mode Power Supply (SMPS) digital, or even analog, 

control problem.

Case study



Simone Buso - UNICAMP - August 2011 7/74

Digital control of switching mode power supplies

  

 

+ 
- 

+ 
- 

+ 

RS 

VDC D1 

VDC 
D2 

S1 

S2 

LS ES 

G1 

G2 

E2 

E1 

C O 

IO 

Case study: a Voltage Source Inverter

Half bridge voltage source inverter
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The VSI represented can be described in the state space by the following 

equations:

Case study: a Voltage Source Inverter
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where x = [IO] is the state vector, u = [VOC, ES]T is the input vector and y = [IO] 

is the output variable.

Direct circuit inspection yields:

A = [-RS/LS],   B = [1/LS, -1/LS],  C = [1],   D = [0, 0]

Based on this model and using Laplace transformation, the transfer function 

between the inverter voltage VOC and the output current IO, GIOVOC
can be 

found to be:
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The VSI controller is organized hierarchically. In the lowest level a controller 

determines the state of each of the two switches, and in doing this, the average 

load voltage. This level is called the modulator level. 

The strategy according to which the state of the switches is changed along time 

is called the modulation law. The input to the modulator is the set point for the 

load average voltage, normally provided by a higher level control loop. 

A direct control of the average load voltage is possible: in this case the VSI is 

said to operate in open loop conditions. However, this is not a commonly 

adopted mode of operation, since no control of load current is provided in the 

presence of load parameter variations.

Case study
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Because of that, in the large majority of cases, a current controller can be found 

immediately above the modulator level. This is responsible for providing the set-

point to the modulator. 

Similarly, the current controller set-point can be provided by a further external 

control loop or directly by the user. 

In the latter case, the VSI is said to operate in current mode, meaning that the 

control circuit has turned a voltage source topology into a controlled current 

source.

Case study
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PWM modulator: analog implementation

Naturally sampled implementation of a PWM modulator.
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A square wave voltage VOC is applied to the load, with constant frequency fS = 

1/TS, TS being the period of the carrier signal c(t), and variable duty cycle d. This 

is implicitly defined as the ratio between the time duration of the +VDC voltage 

application period and the duration of the whole modulation period, TS. 

We can explicitly relate signal m(t) to the resulting PWM duty-cycle. Simple 

calculations show that, in each modulation period, where a constant m is 

assumed, the following equation holds:
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PWM modulator: principles of operation
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In addition, we can compute the relationship between the duty-cycle and the 

average inverter voltage. This turns out to be:
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PWM modulator: principles of operation

If we assume that the modulating signal changes slowly along time, with respect 

to the carrier signal, i.e. the upper limit of m(t) bandwidth is well below 1/TS, we 

can still consider the above result correct. 

This means that, in the hypothesis of a limited bandwidth m(t), the information 

carried by this signal is transferred, by the PWM process, to the duty-cycle, that 

will change slowly along time following the m(t) evolution. Based on the previous 

relation, this means that

The duty-cycle, in turn, is transferred to the load voltage waveform by the power 

converter. The slow variations of the load voltage average value will therefore 

copy those of signal m(t). Therefore, the modulator transfer function, including the 

inverter gain will be given by:
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PWM modulator: principles of operation

Combining the above results with the previously calculated transfer function 

between inverter voltage and inductor current GIOVOC
, we can now find the 

modulating signal to inductor current transfer function G(s), that will be used in 

the design of the current loop compensator.

This is given by:
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and represents the dynamic relationship between small perturbations of the 

modulating signal (around its steady state value) and the corresponding 

variations of the average inductor current value. 
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A more mathematically sound approach, would basically show that the 

frequency content, i.e. the spectrum, of the modulating signal m(t) is shifted 

along frequency by the PWM process, and is replicated around all integer 

multiples of the carrier frequency. 

This implies that, as long as the spectrum of signal m(t) has a limited bandwidth 

with a upper limit well below the carrier frequency, signal demodulation, i.e. the 

reconstruction of signal m(t) spectrum from the signal VOC(t), with associated 

power amplification, can be easily achieved by low pass filtering VOC(t). 

In the case of power converters, like the one we are considering here, the low 

pass filter is actually represented by the load itself.

Again, this implies that the previously found transfer function is, in a first 

approximation (i.e. neglecting the residual ripple), correct. Please note that, 

from now on, the modulating signal m(t) will always be assumed to be limited in 

bandwidth.

PWM modulator: principles of operation
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PWM modulator: principles of operation

Example of PWM operation
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PWM modulator: dynamic response

The previous analysis assumes the following relationship exists between small 

variations of the duty-cycle,   , and the corresponding variations of the 

modulating signal,    .
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The purely proportional relationship implies an instantaneous response (i.e. 

exhibiting no delay whatsoever) of the modulator to changes in the modulating 

signal. A fundamental question arises:

is the assumption correct?

The answer to this question has been found 30 years ago by R.D. Middlebrook, 

and it is absolutely affirmative.
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PWM modulator: dynamic response

Indeed, it is possible to see that any change in the modulating signal’s amplitude, 

provided that its bandwidth limitation is maintained, implies an “immediate”, i.e. in 

phase, adjustment of the resulting duty-cycle. 

This means that the analog implementation of PWM guarantees the minimum 

delay between modulating signal and duty-cycle. Therefore, the intuitive 

representation of the modulator operation can be actually corroborated by a more 

formal, mathematical analysis. 

The formal derivation of an equivalent modulator transfer function, in magnitude 

and phase, has been studied and obtained since the early 80’s. The modulator 

transfer function has been determined using small signal approximations [1], 

where the modulating signal m(t) is decomposed in a dc component M and a 

small signal perturbation      (i.e. m(t) = M + ). The corresponding duty-cycle 

has been found, whose small signal component is called    .

[1] R.D. Middlebrook; “Predicting modulator phase lag in PWM converter feedback loops”, 
Advances in switched-mode power conversion, vol I, pp. 245-250, 1981.
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Under these assumptions, in [1], the author demonstrates that the phase lag of 

the naturally sampled modulator is actually zero, i.e.      and are in phase, 

concluding that the analog PWM modulator delay can always be considered 

negligible. Therefore, the transfer function we already computed can be 

considered as well a reasonable model of the inverter dynamic behaviour.

Quite differently, we will see in the following how the discrete time or digital 

implementations of the pulse width modulator, that necessarily imply the 

introduction of sample-and-hold effects, often determine a significant response 

delay [2].

PWM modulator: dynamic response

[2] D.M. Van de Sype, K. De Gusseme, A.P. Van den Bossche, J.A. Melkebeek, “Small-

signal Laplace-domain analysis of uniformly-sampled pulse-width modulators”; 2004 Power 
Electronics Specialists Conference (PESC), 20-25 June, pp. 4292 - 4298
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PWM modulator: dead times
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To avoid cross conduction, the modulator delays S1 turn-on by a time tdead,

applying the VGE1 and VGE2 command signals to the switches. The duration of 

tdead is  long enough to allow the safe turn off of switch S2 before switch S1 is 

commanded to turn on, considering propagation delays through the driving 

circuitry, inherent switch turn off delays and suitable safety margins. 

The typically required dead time duration for 600 V, 40 A IGBT is currently well 

below 1 µs. Of course, the dead time required duration is a direct function of the 
switch power rating. 

It is important to notice that the effect of the dead time application is the creation 

of a time interval where both switches are in the off state and the load current 

flows through the free-wheeling diodes. 

Because of that, an undesired difference is created between the duration of the 

S1 switch on-time and the actual one, that turns into an error in the voltage

applied to the load. 

PWM modulator: dead times
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It is important to notice that the opposite commutation, i.e. where S1 is turned off 

and S2 is turned on, does not determine any voltage error. However, we must 

point out that, if the load current polarity were reversed, the dead time induced 

load voltage error would take place exactly during this commutation.

The above discussion reveals that, because of dead times, no matter what the 

modulator implementation, an error on the load voltage will always be 

generated. This error, ∆VOC, whose entity is a direct function of dead time 
duration and whose polarity depends on the load current sign, according to the 

following relation

will have to be compensated by the current controller. Failure to do so will 

unavoidably determine a tracking error on the  trajectory the load current has to 

follow (i.e. current waveform distortion). 

PWM modulator: dead times

)(2
O

S

dead

DCOC
Isign

T

t
VV −=∆



Simone Buso - UNICAMP - August 2011 24/74

Digital control of switching mode power supplies

Clock Binary Counter 

Duty-Cycle 

n bits 

n bits 

Binary Comparator 

Timer Interrupt 

Match Interrupt 

PWM modulator: digital implementation

Digital PWM modulator typical structure
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The counter is incremented at every clock pulse; any time the binary counter 

value is equal to the programmed duty-cycle (match condition), the binary 

comparator triggers an interrupt to the microprocessor and, at the same time, 

sets the gate signal low. 

The gate signal is set high at the beginning of each counting (i.e. modulation) 

period, where another interrupt is typically generated for synchronization 

purposes. 

The counter and comparator have a given number of bits, n, which is often 16, 

but can be as low as 8, in the case a very simple microcontroller is used.

Depending on the ratio between the durations of the modulation period and the 

counter clock period, a lower number of effective bits, Ne, could be available to 

represent the duty-cycle. The Ne parameter is important to determine the duty-

cycle quantization step.

PWM modulator: digital implementation
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The number Ne of effective bits, used to represent the duty-cycle, is given by the 

following relation

where fclock is the modulator clock frequency, fS=1/TS is the desired modulation 

frequency and the floor function calculates the integer part of its argument. 

Typical values for fclock are in the few tens of MHz range, while modulation 

frequencies can be as high as a few hundreds of kHz.

When the desired modulation period is short, the number of effective bits, Ne, 

will be much lower than the number of hardware bits, n, available in the 

comparator and counter circuits, unless a very high clock frequency is possible.

PWM modulator: digital implementation
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Digital PWM operation principle
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Digital PWM modulator: dynamic response

It is immediate to see that the modulating signal update is performed only at the 

beginning of each modulation period. 

We can model this mode of operation using a sample and hold equivalent. 

Indeed, we can observe that, neglecting the digital counter and binary 

comparator effects (i.e. assuming infinite resolution for both), the digital 

modulator works exactly as an analog one, where the modulating signal m(t) is 

sampled at the beginning of each modulation period and the sampled value 

held constant for the whole period.
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It is now evident that, because of the sample and hold effect, the response of the 

modulator to any disturbance, e.g. to one requiring a rapid change in the 

programmed duty-cycle value, can take place only during the modulation period 

following the one where the disturbance actually takes place.

This delay amounts to a dramatic difference with respect to the analog 

modulator implementation, where the response could take place already during 

the current modulation period, i.e. with negligible delay. 

Even if our signal processing were fully analog, without any calculation or 

sampling delay, passing from an analog to a digital PWM implementation would 

imply, by itself, an increase in the system’s response delay.

We can now mathematically analyze the simplest implementation of the digital 

modulator, so as to determine its exact dynamic model.

Digital PWM modulator: dynamic response
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Digital PWM modulator: dynamic response
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Digital PWM modulator: dynamic response

Digital PWM: small signal analysis
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Digital PWM modulator: dynamic response

Considering small signal perturbations,      , of the steady state output of the 

sampler, MS, we can see how these are turned into small correction pulses, 

appearing at the modulator output,       .

The correction pulses can be approximated as ideal, zero duration impulses, 

with equal area, and located at the steady state pulse’s edge.

The input perturbations can be, in particular, unity area Dirac impulses applied 

at the modulator input. Considering one of these impulses to be applied at time 

zero, we can immediately find that, in the above approximation, it generates a 

time translated impulse at the output:

whose area is equal to the modulator small signal gain (i.e. the inverse of the 

saw-tooth slope). 
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Digital PWM modulator: dynamic response

Any generic discrete time sampled signal can be expressed as a sum of 

weighted Dirac pulses, such as:

therefore, it is now possible to express the Laplace transform of the generic 

modulator output as a function of the sampled input signal’s one. Since any input 

pulse is translated into a time shifted, scaled area, correction impulse we can 

write:

We can now compute the Laplace transform of both sides of the above 

expression, exploiting the rule for time translation and the basic property of the 

Dirac pulse to have a unity Laplace transform.
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Consequently, we find the following relation:

where

which, by the way, happens to be the equivalent to the Z-transform of the 

sequence                . It is now possible to relate the Laplace transform of the 

sampled data sequence, MS(s), with the original signal’s one, M(s). We can 

write:
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Digital PWM modulator: dynamic response

If we assume, as usual, that the input signal spectrum is limited in bandwidth 

below the Nyquist frequency, and if we neglect the output signal frequency 

content above the same frequency, then we can say:

And, consequently,

that represents the transfer function between the modulator input and output 

signals. A similar procedure can be applied to other, more complex, modulator 

organizations. Another useful relation, that we will use later on, is the following:
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Digital PWM modulator: dynamic response

The transfer functions we just found correspond to a non instantaneous behavior 

of the digital modulator. As can be seen by computing arg(PWM(jω)) there will 
always be a phase shift between the input and output signal, whose entity is, in 

general, a function of the steady state duty-cycle value. For example, in the case 

of the single update, trailing edge implementation we can find:

Similarly, for the symmetric pulse implementation we find:

which is a remarkable result, as it does not depend on the particular steady-state 

value of the duty-cycle, D.
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Digital PWM modulator: dynamic response

To partially compensate for the increased delay of the uniformly sampled 

PWM, the double update mode of operation is often available in several 

microcontrollers and DSPs. 

In this mode, the duty-cycle update is allowed at the beginning and at the half 

of the modulation period. Consequently, in each modulation period, the match 

condition between counter and duty-cycle registers is checked twice, at first 

during the run up phase, then during the run down phase. In the occurrence of 

a match, the state of the gate signal is toggled. 

The result of this mode of operation is a stream of gate pulses that are 

symmetrically allocated within the modulation period, at least in the absence of 

any perturbation. 

Interrupt requests are generated by the timer at the beginning and at the half of 

the modulation period, to allow proper synchronization with other control 

functions, e.g. with the sampling process.



Simone Buso - UNICAMP - August 2011 41/74

Digital control of switching mode power supplies

 

t 

t 

t 

TS 

Timer interrupt request 

Gate signal 

Timer count 

Programmed duty-cycle 

Digital PWM modulator: dynamic response

Digital PWM: double update implementation
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Digital PWM modulator: dynamic response

This modulator implementation can be analyzed as well using a sample and 

hold equivalent. In this case, the sampling frequency is set to the double of the 

modulation frequency. The analysis proceeds following the same approach we 

have used for the basic modulator implementation.

Interestingly, the transfer function we can derive in this case presents a similar 

structure with respect to the symmetric pulse modulator’s one. However, the 

modulator’s phase lag in this case turns out to be equal to:

which is exactly ½ of the previously obtained one. This suggests the 

generalization of the technique, leading to the so-called multi-sampling PWM 

implementations. 
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Digital PWM modulator: dynamic response

Digital PWM: multi-sampled implementation
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Digital PWM modulator: dynamic response

Digital PWM: multi-sampled implementation

The equivalent delay is equal to the one found for the conventional trailing 

edge implementation, reduced by the so-called multi-sampling effect.

It is interesting to observe that, as N tends to infinity, the equivalent delay 

tends to zero, which is consistent with a continuous time, naturally sampled 

implementation of the modulator, where the sample and hold effect is not 

present.

Multi-sampling presents some limitations as well, namely:

- need for proper filtering of the switching noise; 

- need for non conventional hardware;

- generation of dead bands.

Research investigates possible means to overcome the limitations and fully 

exploit the advantages of multi-sampling.
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Digital PWM modulator: dynamic response

Digital PWM: multi-sampled implementation
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tTS

Generation of dead bands.

Vertical intersection: the 

modulator gain is zero.
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[3] L. Corradini, P.Mattavelli, “Modeling of Multisampled Pulse Width Modulators for

Digitally Controlled DC–DC Converters”, IEEE Trans. on Power Electronics, Vol. 23, No. 
4, July 2008, page(s) 1839-1847.

The presence of zero gain regions in the multi-sampled modulator trans-

characteristic increases the settling time during transients and generates sub-

harmonic oscillations in the steady state.

One possible way to compensate for these undesired effects consists in 

suitably synchronizing the sampling process and the modulator (i.e. the carrier 

wave) so that only horizontal intersections are allowed to take place [3].

Digital PWM modulator: dynamic response

Digital PWM: multi-sampled implementation
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Three phase systems

What we have just seen for single phase converters can be almost identically 

applied to three phase systems. When the three phase converter is 

characterized by four wires, i.e. three phases plus neutral, the application is 

straightforward, since a four wire three phase system is totally equivalent to 

three independent single phase systems. Of course, this particular situation 

does not deserve any further discussion. On the contrary, we need to apply a 

little more caution when we are dealing with a three phase system with 

insulated neutral, i.e. with a three-wire, three-phase system.

The αβαβαβαβ transformation represents a very useful tool for the analysis and the 
modelling of three phase electrical systems. In general, a three phase linear 

electric system can be properly described in mathematical terms only by 

writing a set of tri-dimensional dynamic equations (integral and/or differential), 

providing a self consistent mathematical model for each phase. In some cases 

though, the existence of physical constraints makes the three models not 

independent from each other. In these circumstances the order of the 

mathematical model can be reduced without any loss of information. We will 

see a remarkable example of this in the following.



Simone Buso - UNICAMP - August 2011 49/74

Digital control of switching mode power supplies

Three phase systems

Supposing that it is physically meaningful to reduce the order of the 

mathematical model from three to two dimensions, αβ transformation 
represents the most commonly used relation to perform the reduction of order. 

To explain how it works we can consider a tri-dimensional vector [xa, xb, xc] 

that can represent any triplet of system’s electrical variables (voltages or 

currents). We can now consider the following linear transformation, , 

that, in geometrical terms, represents a change from the set of reference axes 

denoted as abc to the equivalent one indicated as αβγ. 
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[ ] [ ] [ ] }100,010,001{
TTT

abc
=Β

[ ] [ ] [ ] }212121,23230,21211{32
TT

T
−−−=Βαβγ

This change of reference axes takes place because the standard R3 orthonormal base 

Babc

αβαβαβαβ Transformation

is replaced by the new base Bαβγ

The Bαβγ base is once again orthonormal, i.e. its vectors have unity norm and are 

orthogonal to one another, thanks to the presence of the coefficient       . Orthonormality 

implies that: i) the inverse of the  transformation is equal to the matrix transposed and ii)
the computation of electrical powers is independent from the transformation of 

coordinates. 

32
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a 

b 

c 
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π ≡ xa + xb +xc = 0  
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b 

c 
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β 

The  transformation has an additional, interesting property, that becomes clear when 
we take into account the following  condition

whose meaning is to operate the restriction of the tri-dimensional space to a 

plane π (Fig. 4.1.1.a).

0x0xxx
cba

=⇒=++ γ

αβαβαβαβ Transformation
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We can therefore define the so called αβ transformation as follows :

and its inverse as
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αβαβαβαβ Transformation
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Space Vector Modulation - SVM

We can consider a typical three phase voltage source inverter and represent the possible 

output voltage configurations as vectors on the αβ plane π.
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Space Vector Modulation - SVM
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Space Vector Modulation - SVM
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Space Vector Modulation - SVM
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The procedure of Space Vector Modulation can be explained referring to the following 

figure:

Space Vector Modulation - SVM
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Space Vector Modulation - SVM

The basic relations, used to compute the vector duty-cycles are the following:

Considering that the sum of the three duty-cycles has to be 1, i.e. the whole modulation 

period must be occupied, we can derive the third of them, referred to the zero vector: 

The average voltage vector generated by the inverter is therefore: 



Simone Buso - UNICAMP - August 2011 65/74

Digital control of switching mode power supplies

2

V
15.1

2

V

3

2
U

2

3
V

3

2
U

2

3 DCDC
MMAXDCMMAX ⋅≅=⇔=

Space Vector Modulation - SVM

It can be interesting to identify the locus of the constant amplitude rotating reference 
vectors that can be generated by the inverter without distortion. 

This is represented by the circle inscribed in the vector hexagon. It is easy to verify that 

every vector that lays inside the circle generates a valid δ1, δ2, δ3, triplet. Instead, a vector 
that lays partially outside the circle cannot be generated by the inverter, because the sum 

of the corresponding δ1, δ2, δ3 becomes greater than unity. 

This situation is called inverter saturation and generally causes output voltage distortion.

It is easy to calculate the amplitude U
MMAX

of the voltage triplet that corresponds to a 
rotating vector having an amplitude equal to the radius of the inscribed circle. We find:
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Space Vector Modulation - SVM

Performing SVM, what is used to synthesize the desired output voltage vector  is not the 

superposition of vectors laying on plane π. A more realistic representation of the inverter 

output vectors, that puts into evidence their γ component, is shown here:
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The above observation means that SVM implies a particular modulation of the voltage 

between nodes N and G, V
NG

. This is due to the common mode component of the 
inverter output voltage vectors. Indeed, it is easy to demonstrate that, in case of a 
symmetrical load structure, almost always encountered in practice, V

NG
is 

instantaneously and exactly equal to the γ component of the inverter output voltage.

The most important implication of this fact is that the phase to neutral voltage of the 
load will always be insensitive to any common mode component of the inverter output 

voltage, i.e. one can freely add common mode components to the  vector, without 

perturbing the load voltage.

This is exactly what SVM implicitly does. Its effect, from the inverter’s standpoint, can 

be proved to be very similar to that of third harmonic injection, sometimes employed in 

analog three phase PWM implementations. 

An increase by 15% of the voltage amplitude range that corresponds to a linear 
converter operation, i.e. to the absence of any saturation phenomenon, is obtained, as 

clearly demonstrates.

Space Vector Modulation - SVM
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Space Vector Modulation - SVM

We consider now a possible implementation algorithm for space vector modulation, that 
can be directly programmed into a microcontroller or digital signal processor. The first 

issue in SVM implementation is the identification of the hexagon sector where the 

reference vector is laying. 

This can be done by implementing once again a base change from the αβ reference 
frame to a new set of three different reference frames. 
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As can be seen, each frame refers to a particular couple of hexagon sectors. The method 

we propose simply requires the projection of the inverter output voltage reference vector 
onto each one of the three hexagon reference frames. This is easily implemented with the 

following set of reference base change matrixes:

Space Vector Modulation - SVM

that map the orthogonal set of axes α and β onto the three, non-orthogonal sets Z. It is 
interesting to notice that the algorithm required to implement the three projections is quite 
simple. 
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Space Vector Modulation - SVM
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Space Vector Modulation - SVM
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There can be different possible generation sequences: depending on the controlled 
system characteristics, one can be more advantageous than the other. One is the 

following, that minimizes the commutations:

Space Vector Modulation - SVM
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While the following one minimizes the current ripple amplitude and, therefore, current 
distortion:

Space Vector Modulation - SVM
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Space Vector Modulation - SVM

The typical organization of a three-phase VSI controller based on SVM is shown here. 

As can be seen, the controller takes advantage of the application of αβ transformations to 
operate on two sampled variables instead of three. 


