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Digital Signal ProcessingDigital Signal Processing
One of the more frequent uses of mCs and 
DSPs is in digital signal processing applications
and/or real-time control of processes and 
systems.
The fundamental difference between the two 
is represented by feedback, not present in 
the first case, fundamental in the second one.
The problems encountered in these applications 
are related to discrete time operation of 
processors, to the finite precision of their 
arithmetic unit and to the quantization of data 
and coefficients. 
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Digital FiltersDigital Filters

In a digital filter, a signal is acquired by the 
mC or DSP through a A/D converter.
This process implies two effects: sampling and 
quantization.
Sampling changes the signal from continuous 
time s(t) to discrete time s(kT).
Quantization changes the signal from analog
to digital.
The elaboration takes places on a sequence of 
quantized samples and generates a new
sequence (y).
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Digital FiltersDigital Filters
As with analog filters, digital filters may have 
different characteristics:
1. low pass;
2. high pass;
3. band pass or notch;

depending on their frequency response 
behavior.
Any analog filter can be turned into a digital 
equivalent within a given precision. Vice-versa 
is not true: some digital filters do not have 
analog equivalents (FIR filters).
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Digital FiltersDigital Filters
Any digital filter can be written as a n-th 
order difference equation such as:

y(k) = b0x(k) + b1x(k-1) + … + bnx(k-n) +
+ a1y(k-1) + a2y(k-2) + … +amy(k-m)

When one, at least, of the ai coefficients is  
<> 0 the filter is called IIR (infinite impulse 
response).
A FIR filter (finite impulse response) is 
instead characterized by having all the ai
coefficients equal to zero. 
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IIR digital low pass filterIIR digital low pass filter
A very simple example of a IIR digital low 
pass filter is given by:

y(k) = b·x(k) + (1-b)·y(k-1)

It is easy to analyze the filter’s step 
response, i.e. its response to the input 
sequence g = {1, 1, 1, 1, 1, … }.
Choosing, for instance, b = 0.1 we get:
y = {0.1, 0.19, 0.27, 0.34, 0.41, … }.
The sequence y goes to 1, but with a infinite 
duration transient. This is due to the term 
y(k-1). We also call this a recursive filter.
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Our IIR filter 
responds to a step 
input as if it was the  
sampled version of a  
first order low-pass 
analog filter. 
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Its speed of response, with respect to the 
sampling period, depends on our choice of b.
The bigger b, but < 1 (!), the faster the 
speed of response.
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Varying parameter b between 0 and 1 we can 
approximate any first order low pass analog 
filter. The x(k) and y(k-1) coefficients could 
be chosen freely, but:
1. if the sum of the coefficients is equal to 

1 then the dc gain of the filter is unity;
2. if the y(k-1) coefficient has magnitude < 

1 then the filter is also stable.
As an example, the filter:

y(k) = 2.1·x(k) - 1.1·y(k-1)

is unstable!
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When we need to get a very fast speed of 
response, we may want to choose values for b 
very close to 1.
In this case, however, the finite precision of 
the processor we are using limits our 
capability to represent the coefficients!
For instance, in an 8 bit processor, if we 
choose b > 0.992 we are no longer in a 
condition to correctly represent 1-b.
Indeed, the minimum number we will be able 
to represent will be 2-7 ≅ 0.008. Lower 
numbers are all “seen” as 0.
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We can get a similar low pass filter also 
without using recursion. For example, a filter 
like the following:

We can get a similar low pass filter also 
without using recursion. For example, a filter 
like the following:

y(k) =y(k) = 11
NN ΣΣ x(k-i)x(k-i)

i=0i=0

N-1N-1
··

is called N-th order moving average filter. 
It is basically a low pass filter, but its 
response gets to the steady state after N 
sampling periods. As always with FIR 
filters, there is no stability problem, even 
in case of a wrong coefficient choice.

is called N-th order moving average filter. 
It is basically a low pass filter, but its 
response gets to the steady state after N 
sampling periods. As always with FIR 
filters, there is no stability problem, even 
in case of a wrong coefficient choice.

FIR digital low pass filterFIR digital low pass filter
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Considering, as an example, N=4, the filter 
step response (g = {1, 1, 1, … }) is given by 
sequence y = {0.25, 0.5, 0.75, 1, 1, 1, … }.
Thus, after only 4 steps the transient is 
over. A similar response cannot be achieved 
from any analog filter.
We may observe that, to make the two filter 
responses similar to each other, we need to 
take a much higher order for the FIR filter 
(or a much higher b value for the IIR filter).
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FIR digital low pass filterFIR digital low pass filter
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Considering, for instance, N=22, the two 
filters respond in a similar way.
Considering, for instance, N=22, the two 
filters respond in a similar way.
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Thus, the FIR filter 
requires a bigger 
number of operations 
to give a step 
response similar to 
the IIR filter’s one 
(22 terms instead of 
2). This always 
happens with FIR 
filters.

Thus, the FIR filter 
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the IIR filter’s one 
(22 terms instead of 
2). This always 
happens with FIR 
filters.
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Frequency ResponseFrequency Response
Digital filters can be described also by 
means of their frequency response.
Digital filters can be described also by 
means of their frequency response.
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Looking at the three frequency responses  
(taking into account only its magnitude) we 
see that the filters have a similar behavior.
The FIR filter exhibits frequency 
cancellation phenomena, due to the 
periodicity of its structure. The envelope of 
its frequency response magnitude, follows 
that of the IIR filter and of the reference 
analog filter.
The IIR filter and the analog one respond in 
practically identical ways (the digital filter is 
indeed the discretization of the analog one).
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cancellation phenomena, due to the 
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analog filter.
The IIR filter and the analog one respond in 
practically identical ways (the digital filter is 
indeed the discretization of the analog one).
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A simple high pass filter can be obtained using 
the following difference equation:

y(k) = x(k) – x(k-1) + a·y(k-1)

Being a recursive equation, it corresponds to a  
IIR filter. Parameter a allows to tune the 
filter response.
Everything is OK if 0 < a < 1, otherwise we 
may get (damped) oscillatory step responses or 
even unstable ones. Actually, it is better to 
take, at least, a > 0.5.

A simple high pass filter can be obtained using 
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IIR filter. Parameter a allows to tune the 
filter response.
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even unstable ones. Actually, it is better to 
take, at least, a > 0.5.

IIR digital high pass filterIIR digital high pass filter
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Our IIR high pass 
filter responds to a 
step input as if it 
was the sampled 
version of a first 
order high pass 
analog filter.

Our IIR high pass 
filter responds to a 
step input as if it 
was the sampled 
version of a first 
order high pass 
analog filter.

The graph is obtained with a = 0.91. Lower a
values produce faster responses.
The graph is obtained with a = 0.91. Lower a
values produce faster responses.
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Again, we can get a similar filter without 
using recursion. The following filter:
Again, we can get a similar filter without 
using recursion. The following filter:

is a N-order FIR high pass filter. Its step 
response reaches the steady-state after N
sampling periods. To get a similar response 
with respect to the IIR filter, we need to 
take relatively high N values (>20).

is a N-order FIR high pass filter. Its step 
response reaches the steady-state after N
sampling periods. To get a similar response 
with respect to the IIR filter, we need to 
take relatively high N values (>20).

y(k) =y(k) = 11
NN ΣΣ x(k-i)x(k-i)

i=1i=1

N-1N-1
··x(k) -x(k) -N-1N-1
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··

FIR digital high pass filterFIR digital high pass filter
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Frequency ResponseFrequency Response
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In this case we get again very similar 
frequency responses: note that the filters 
have relatively low band pass frequencies.

In this case we get again very similar 
frequency responses: note that the filters 
have relatively low band pass frequencies.
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DiscretizationDiscretization
We can always use discretization techniques
to turn a continuous time filter into an 
equivalent discrete time one.
The easiest way to do this is using a suitable 
approximation of the integral operator (1/s) 
in the discrete time domain, as for example 
that based on the Euler approximation:

We can always use discretization techniques
to turn a continuous time filter into an 
equivalent discrete time one.
The easiest way to do this is using a suitable 
approximation of the integral operator (1/s) 
in the discrete time domain, as for example 
that based on the Euler approximation:

ΣΣ x(k)x(k)
k=1k=1

nn
·T·T∫∫ x dtx dt ≅≅

00

nTnT
where T is the so 
called integration step.
where T is the so 
called integration step.
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DiscretizationDiscretization
We can then write:We can then write:

Int_x(nT)Int_x(nT) ≅≅ T·[x(1)+x(2)+…+x(n-1)+x(n)]T·[x(1)+x(2)+…+x(n-1)+x(n)]

Int_x[(n-1)T]Int_x[(n-1)T]

Int_x(nT) = Int_x[(n-1)T]+T·x(n) Int_x(nT) = Int_x[(n-1)T]+T·x(n) 

that isthat is
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DiscretizationDiscretization
Because this is an approximation process, the 
discretization does not maintain the filter 
frequency response unaltered. Indeed the 
original filter frequency response is 
perturbed and warping phenomena appear. 
We therefore need to be very careful when 
applying this method, to avoid unexpected
digital filter behaviors. As a rule of thumb,
we say that discretization results are 
accurate only up to frequencies equal to  
1/10 of the sampling frequency.

Because this is an approximation process, the 
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1/10 of the sampling frequency.
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DiscretizationDiscretization
We may use even more sophisticated 
discretization methods, that allow us to 
obtain a better frequency response 
approximation. For instance:

We may use even more sophisticated 
discretization methods, that allow us to 
obtain a better frequency response 
approximation. For instance:
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TT

1-z-11-z-122
1+z-11+z-1··

Trapezoidal integration, 
or Tustin transform. 
Trapezoidal integration, 
or Tustin transform. 

Finally, we have several methods based on 
some kind of response invariance to a 
particular family of signals, like steps or 
ramps.

Finally, we have several methods based on 
some kind of response invariance to a 
particular family of signals, like steps or 
ramps.
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Real-time controlReal-time control
Closed loop digital control of systems or 
processes, requires the mC or DSP to 
elaborate signals taken from the plant, 
according to suitable algorithms, implementing 
different kinds of regulators.
The design of such regulators requires the 
application of discrete time automatic control
theory. 
Their implementation is done using the same 
signal processing techniques we described for 
digital filter synthesis.

Closed loop digital control of systems or 
processes, requires the mC or DSP to 
elaborate signals taken from the plant, 
according to suitable algorithms, implementing 
different kinds of regulators.
The design of such regulators requires the 
application of discrete time automatic control
theory. 
Their implementation is done using the same 
signal processing techniques we described for 
digital filter synthesis.
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The synthesis of regulators can be done again 
following different strategies.
The simplest one consists in the discretization 
of regulators that have been previuosly 
designed in the continuous time domain.
In most cases, these are just simple PID 
regulators.
As an alternative, it is possible to use control 
algorithms that have no continuous time 
domain equivalent, such as, for instance, the 
various types of predictive controllers.

The synthesis of regulators can be done again 
following different strategies.
The simplest one consists in the discretization 
of regulators that have been previuosly 
designed in the continuous time domain.
In most cases, these are just simple PID 
regulators.
As an alternative, it is possible to use control 
algorithms that have no continuous time 
domain equivalent, such as, for instance, the 
various types of predictive controllers.

Real-time controlReal-time control
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It is worth noting that, in most cases, the 
regulators adopted in industrial applications 
are just PID controllers.
PID controllers usually represent a very good 
trade-off between complexity and achievable 
performance.
They are extremely robust and relatively easy 
to tune (small number of parameters).
Achievable performance is often more than 
satisfactory, even if always lower with 
respect to that offered by their analog 
counterparts.

It is worth noting that, in most cases, the 
regulators adopted in industrial applications 
are just PID controllers.
PID controllers usually represent a very good 
trade-off between complexity and achievable 
performance.
They are extremely robust and relatively easy 
to tune (small number of parameters).
Achievable performance is often more than 
satisfactory, even if always lower with 
respect to that offered by their analog 
counterparts.

Real-time controlReal-time control
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PI RegulatorPI Regulator
In the analog domain, a PI regulator is 
described by an input-output relation of the 
following type:

In the analog domain, a PI regulator is 
described by an input-output relation of the 
following type:

Y(s)Y(s)

E(s)E(s)
= kp += kp + kiki

ss
kp = proportional gainkp = proportional gain
ki = integral gainki = integral gain

PI(s)PI(s)
urefuref

uu

ee yy++
--
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By direct discretization, it is possible to turn 
the continuous time PI regulator into a 
suitable control algorithm. Of course, kp and 
ki constants ought to be known already!
We then immediately find the following 
control equations:

By direct discretization, it is possible to turn 
the continuous time PI regulator into a 
suitable control algorithm. Of course, kp and 
ki constants ought to be known already!
We then immediately find the following 
control equations:

y(k) = kp·e(k) + yI(k)y(k) = kp·e(k) + yI(k)

yI(k) = ki·T·e(k) + yI(k-1)yI(k) = ki·T·e(k) + yI(k-1)

integral control integral control 

k’
ik’
i

PI RegulatorPI Regulator
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PI RegulatorPI Regulator

+++
+++
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ee yy
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k’
i = ki·T (T is the sampling period)k’
i = ki·T (T is the sampling period)

z-1 = unity delayzz--11 = unity delay= unity delay

Parallel realization 
of the PI algorithm
Parallel realization 
of the PI algorithm
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Given the simplicity of the PI controller 
equations, the computation of y can be very 
fast. If we have a mC or DSP with MAC 
instruction, the algorithm may require only 3 
clock cycles:
1. accumulator precharge with yI(k-1);
2. computation of yI(k), i.e. MAC e(k),k’I; 
3. computation of y(k), i.e. MAC e(k),kp;

In the end, the accumulator contains y(k).

Of course, several things may go wrong in the 
process (overflow, quantization, …)!

Given the simplicity of the PI controller 
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fast. If we have a mC or DSP with MAC 
instruction, the algorithm may require only 3 
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1. accumulator precharge with yI(k-1);
2. computation of yI(k), i.e. MAC e(k),k’I; 
3. computation of y(k), i.e. MAC e(k),kp;
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PI RegulatorPI Regulator
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PID RegulatorPID Regulator
In the analog domain a PID regulator is  
described by an input-output relation like the 
following:

In the analog domain a PID regulator is  
described by an input-output relation like the 
following:

Y(s)Y(s)

E(s)E(s)
= kp += kp +

kiki
ss + s·kd+ s·kd

kp = proportional gainkp = proportional gain
ki = integral gainki = integral gain

kd = derivative gainkd = derivative gain

PID(s)PID(s)
urefuref

uu

ee yy++
--
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A purely derivative control action cannot be 
implemented in the analog domain (the 
corresponding transfer function is not proper), 
nevertheless it is possible to generate it 
numerically, for instance like this: 

yd(k) = k’d·[e(k)-e(k-1)], k’d= kd/T

The derivative action is very noise sensitive,
actually it is a good noise amplifier.
We must use it with great care: a typical 
provision is to combine it with a series low 
pass filter.

A purely derivative control action cannot be 
implemented in the analog domain (the 
corresponding transfer function is not proper), 
nevertheless it is possible to generate it 
numerically, for instance like this: 

yd(k) = k’d·[e(k)-e(k-1)], k’d= kd/T

The derivative action is very noise sensitive,
actually it is a good noise amplifier.
We must use it with great care: a typical 
provision is to combine it with a series low 
pass filter.

PID RegulatorPID Regulator
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The derivative action is normally implemented  
according to the following algorithm:
The derivative action is normally implemented  
according to the following algorithm:

·[e(k)-e(k-1)] +·[e(k)-e(k-1)] +yd(k) =yd(k) =
kdkd

T+τLT+τL
·yd(k-1)·yd(k-1)

τLτL
T+τLT+τL

that corresponds to the following continuos 
time domain transfer function:
that corresponds to the following continuos 
time domain transfer function:

kd·skd·sYd(s)Yd(s)
E(s)E(s) 1+s·τL1+s·τL

==
Low pass filter: 
limits the 
derivative action at 
high frequencies.

Low pass filter: 
limits the 
derivative action at 
high frequencies.

PID RegulatorPID Regulator
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As an alternative, we can use more complex 
derivative algorithms, based on the linear
interpolation of several samples.

As an alternative, we can use more complex 
derivative algorithms, based on the linear
interpolation of several samples.

We create a virtual
sample e* that is 
located at one half 
of the considered 
interval (4 samples, 
here) and whose 
value is the average
of the considered 
samples.

We create a virtual
sample e* that is 
located at one half 
of the considered 
interval (4 samples, 
here) and whose 
value is the average
of the considered 
samples.

kk

e(k)e(k)

k-1k-1k-2k-2k-3k-3

e*e*

∆T∆T
∆T/2∆T/2
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The derivative is then expressed as the 
average value of the incremental ratios
computed among the considered samples and 
the virtual sample e*, that is:

The derivative is then expressed as the 
average value of the incremental ratios
computed among the considered samples and 
the virtual sample e*, that is:

dede
dtdt

e(k)–e*e(k)–e*

1.5T1.5T
≅≅ ++

11
44

··
e(k-1)–e*e(k-1)–e*

0.5T0.5T
e(k-2)–e*e(k-2)–e*

0.5T0.5T
e(k-3)–e*e(k-3)–e*

1.5T1.5T
-- --

where e* =where e* = 11
44

·· [e(k)+e(k-1)+e(k-2)+e(k-3)][e(k)+e(k-1)+e(k-2)+e(k-3)]

dede
dtdt

≅≅
11
6T6T

·· [e(k)+3e(k-1)-3e(k-2)-e(k-3)][e(k)+3e(k-1)-3e(k-2)-e(k-3)]

We then find:We then find:

PID RegulatorPID Regulator

Simone Buso - Seminar 3 38

It is possible to extend the average to a 
bigger number of samples, thus further 
reducing the sensitivity of the computation to 
noise. But, in this case, the speed of 
response becomes lower. 
Extending the average to more than a few 
samples, as in our example, is often not 
advantageous.
Moreover, it is possible to use different
configurations of the PID regulator, where 
the derivative action is treated differently 
from the proportional and integral ones.

It is possible to extend the average to a 
bigger number of samples, thus further 
reducing the sensitivity of the computation to 
noise. But, in this case, the speed of 
response becomes lower. 
Extending the average to more than a few 
samples, as in our example, is often not 
advantageous.
Moreover, it is possible to use different
configurations of the PID regulator, where 
the derivative action is treated differently 
from the proportional and integral ones.
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PI regulator with anti-wind-upPI regulator with anti-wind-up
A serious problem with integral regulators is 
given by the integrator saturation during  
transients (or in the presence of other 
saturations in the system control loop).
The presence of a non-zero error at the 
integrator input for relatively long periods,
unavoidably causes undesired desaturation 
transients, when the regulator comes back to 
normal operation.
This transient is often unacceptable. It can 
be removed, if we use a specific provision 
called anti-wind-up action.

A serious problem with integral regulators is 
given by the integrator saturation during  
transients (or in the presence of other 
saturations in the system control loop).
The presence of a non-zero error at the 
integrator input for relatively long periods,
unavoidably causes undesired desaturation 
transients, when the regulator comes back to 
normal operation.
This transient is often unacceptable. It can 
be removed, if we use a specific provision 
called anti-wind-up action.
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The simplest way to operate the anti-wind-up
action is the following.
The simplest way to operate the anti-wind-up
action is the following.

++
++

++
++

kkpp

k’k’ii

zz--11

ee yy

ii
LL

YYmaxmax

|L(k)| = |L(k)| = YYmaxmax -- ||kkpp·e(k)|·e(k)|

Each control 
period, we 
compute limit L.
The current 
output of the 
integral controller 
is limited within 
±L. This way y is 
always < Ymax in 
absolute value.

Each control 
period, we 
compute limit L.
The current 
output of the 
integral controller 
is limited within 
±L. This way y is 
always < Ymax in 
absolute value.
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The anti-wind-up action complicates the PI 
algorithm quite a lot, since it needs the 
evaluation of L, that is of the difference
between Ymax and the integral controller 
output at every control cycle. Besides, the 
limitation of the integral controller requires
its comparison with limit L, and, depending on 
the result, different actions, i.e. the program 
will include conditional branches. Some mCs 
allow to reduce this complexity because their 
assembly include specifically designed
instructions (e.g. saturated arithmetic).

The anti-wind-up action complicates the PI 
algorithm quite a lot, since it needs the 
evaluation of L, that is of the difference
between Ymax and the integral controller 
output at every control cycle. Besides, the 
limitation of the integral controller requires
its comparison with limit L, and, depending on 
the result, different actions, i.e. the program 
will include conditional branches. Some mCs 
allow to reduce this complexity because their 
assembly include specifically designed
instructions (e.g. saturated arithmetic).
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Unity step 
responses of a 
closed loop 
system with 2  
PI regulators. 
The first does 
not include 
anti-wind-up, 
the second 
instead does.

Unity step 
responses of a 
closed loop 
system with 2  
PI regulators. 
The first does 
not include 
anti-wind-up, 
the second 
instead does.

The anti-wind-up reduces the overshoots in 
the reference step variation responses.
The anti-wind-up reduces the overshoots in 
the reference step variation responses.

11

00
00

1.351.35

tt

Anti-wind-up 
intervention
Anti-wind-up 
intervention

Step variation 
of uref

Step variation 
of uref

Overshoot is 
35%
Overshoot is 
35%
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Predictive RegulatorsPredictive Regulators
When a reliable model of the controlled plant 
is available, it is possible to implement 
predictive or dead-beat controllers.
These can only be implemented digitally, 
because they are based on a on-line plant 
model running internally to the controller.
The closed loop system dynamics (in terms of 
step response), in case of a perfect, ideal 
model (no model errors), can be made equal to 
those of a pure delay, of a certain minimum 
order.

When a reliable model of the controlled plant 
is available, it is possible to implement 
predictive or dead-beat controllers.
These can only be implemented digitally, 
because they are based on a on-line plant 
model running internally to the controller.
The closed loop system dynamics (in terms of 
step response), in case of a perfect, ideal 
model (no model errors), can be made equal to 
those of a pure delay, of a certain minimum 
order.

Simone Buso - Seminar 3 45

The general structure of a predictive regulator 
is the following:
The general structure of a predictive regulator 
is the following:

yrefyref

yy

ee++
--

plantplant
uu++

--1-z-11-z-1

kI·TkI·T

KK State 
observer
State 

observer

yy

xx

The controller needs an estimation of the 
system state variables, that is used to close 
the control loop.

The controller needs an estimation of the 
system state variables, that is used to close 
the control loop.

integratorintegrator
uu
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Even if it is a very powerful control tool, 
predictive control is rarely used in industrial 
applications.
This is due to its relatively high complexity
and to the consequent difficulty in the design 
of the controller parameters.
Moreover, reliable plant models are not always 
available (in this case, system identification is 
required).
Lastly, this type of controllers are relatively 
noise sensitive. Great care must be taken in 
signal conditioning. 
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predictive control is rarely used in industrial 
applications.
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and to the consequent difficulty in the design 
of the controller parameters.
Moreover, reliable plant models are not always 
available (in this case, system identification is 
required).
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noise sensitive. Great care must be taken in 
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