
1

Simone Buso - Seminar 2 1

Seminar 2Seminar 2

Summary
• The I/O subsystem
• Memory mapped and isolated I/O
• Polling vs interrupts
• Vectored interrupts
• Priority of interrupts
• Latency times
• DMA

Summary
• The I/O subsystem
• Memory mapped and isolated I/O
• Polling vs interrupts
• Vectored interrupts
• Priority of interrupts
• Latency times
• DMA

Simone Buso - Seminar 2 2

Seminar 2Seminar 2
Some references
1. A. Clements, "The principles of computer

hardware", Oxford, 2000, cap. 8, pagg. 407-
416.

2. J. B. Peatman, "Design with Microcontrollers",
McGraw - Hill, 1988, cap. 3, pp. 56-90.

Some references
1. A. Clements, "The principles of computer

hardware", Oxford, 2000, cap. 8, pagg. 407-
416.

2. J. B. Peatman, "Design with Microcontrollers",
McGraw - Hill, 1988, cap. 3, pp. 56-90.

Simone Buso - Seminar 2 3

InterruptsInterrupts
Each microprocessor system is characterized
by the same fundamental components, that
are:
1. Aritmetic Logic Unit (ALU)
2. Control Unit
3. Memory
4. I/O peripheral units

The management of the I/O subsystem can be
operated using different strategies. The more
commonly encounterd in mCs and DSPs (for
real time control applications) is based on
interrupts.

Each microprocessor system is characterized
by the same fundamental components, that
are:
1. Aritmetic Logic Unit (ALU)
2. Control Unit
3. Memory
4. I/O peripheral units

The management of the I/O subsystem can be
operated using different strategies. The more
commonly encounterd in mCs and DSPs (for
real time control applications) is based on
interrupts.

Simone Buso - Seminar 2 4

In some simple cases, a program controlled
management of the peripheral units is
preferable.
This technique (called “polling”) is by far less
efficient with respect to the use of
interrupts.
Besides, some DSPs and top range mCs, allow
the use of a dedicated I/O processor, called
DMAC (Direct Memory Access Controller).
This allows the management of the I/O
subsystem with the minimum use of the CPU
time.

In some simple cases, a program controlled
management of the peripheral units is
preferable.
This technique (called “polling”) is by far less
efficient with respect to the use of
interrupts.
Besides, some DSPs and top range mCs, allow
the use of a dedicated I/O processor, called
DMAC (Direct Memory Access Controller).
This allows the management of the I/O
subsystem with the minimum use of the CPU
time.

InterruptsInterrupts

Simone Buso - Seminar 2 5

I/O SubsystemI/O Subsystem

I/O subsystem organization. The various
peripheral units are connected to the bus by
a suitable interface circuit.

I/O subsystem organization. The various
peripheral units are connected to the bus by
a suitable interface circuit.

CPUCPU

MemoryMemory

InterfaceInterface

InterfaceInterface I/O
peripheral

I/O
peripheral

I/O
peripheral

I/O
peripheral

BusBus
Data
Bus
Data
Bus

DREGDREG

SREGSREG

CREGCREG

InterfaceInterface

Address
Bus

Address
Bus

Simone Buso - Seminar 2 6

The interface circuit takes care of logical
and, if required, electrical adaptation between
the peripheral units and the CPU. Each
peripheral unit operates asynchronously with
respect to the CPU.
The interface must therefore include
different registers (I/O ports) to:
1. allow data exchange with the CPU;
2. allow configuration of the peripheral unit;
3. keep trace of peripheral unit status.

The interface circuit takes care of logical
and, if required, electrical adaptation between
the peripheral units and the CPU. Each
peripheral unit operates asynchronously with
respect to the CPU.
The interface must therefore include
different registers (I/O ports) to:
1. allow data exchange with the CPU;
2. allow configuration of the peripheral unit;
3. keep trace of peripheral unit status.

I/O SubsystemI/O Subsystem

2

Simone Buso - Seminar 2 7

Control register CREG and status register
SREG are often made up of a few bits only
and so are often part of the same memory
location. Also DREG registers have sometimes
a different size with respect to the CPU
word (for instance in ADCs).
These registers must be read and written.
There are two different possible
organizations:
1. memory mapped I/O;
2. isolated I/O.

Control register CREG and status register
SREG are often made up of a few bits only
and so are often part of the same memory
location. Also DREG registers have sometimes
a different size with respect to the CPU
word (for instance in ADCs).
These registers must be read and written.
There are two different possible
organizations:
1. memory mapped I/O;
2. isolated I/O.

I/O SubsystemI/O Subsystem

Simone Buso - Seminar 2 8

Memory mapped I/OMemory mapped I/O

Memory mapped I/O organizations consider
the peripheral unit registers as if they were
conventional memory locations, which do not
require specific instructions to be read
and/or written. This strategy is often used in
mCs and DSPs.
Its implementation simply require the
connection of peripheral units to some
particular address bus lines, that, thanks to
decoding circuits (multiplexers), select the
different units straightforwardly.

Memory mapped I/O organizations consider
the peripheral unit registers as if they were
conventional memory locations, which do not
require specific instructions to be read
and/or written. This strategy is often used in
mCs and DSPs.
Its implementation simply require the
connection of peripheral units to some
particular address bus lines, that, thanks to
decoding circuits (multiplexers), select the
different units straightforwardly.

Simone Buso - Seminar 2 9

Isolated I/OIsolated I/O
The organization with isolated input/output
is instead based on specific instructions to
program and manage the different
peripheral units.
The execution of these instructions require
the same address bus management of
conventional instructions. Differently from
these, they require dedicated control lines
to operate on the various peripheral units.
This tecnique is no longer used in modern
mCs and DSPs.

The organization with isolated input/output
is instead based on specific instructions to
program and manage the different
peripheral units.
The execution of these instructions require
the same address bus management of
conventional instructions. Differently from
these, they require dedicated control lines
to operate on the various peripheral units.
This tecnique is no longer used in modern
mCs and DSPs.

Simone Buso - Seminar 2 10

Typical peripheral unitsTypical peripheral units
mCs and DSPs for embedded control
applications are typically characterized by
the same peripheral units such as:
1. A/D converters and, sometimes, DACs;
2. timer and counters (PWM modulators);
3. communication modules (serial

interfaces, field bus drivers, …);
4. encoder interfaces;
5. display interfaces (only in mCs);
6. external memory drivers (DRAM rarely).

mCs and DSPs for embedded control
applications are typically characterized by
the same peripheral units such as:
1. A/D converters and, sometimes, DACs;
2. timer and counters (PWM modulators);
3. communication modules (serial

interfaces, field bus drivers, …);
4. encoder interfaces;
5. display interfaces (only in mCs);
6. external memory drivers (DRAM rarely).

Simone Buso - Seminar 2 11

SynchronizationSynchronization
Since the peripheral units operate
asynchronously and at a lower speed, with
respect to the CPU, the exchange of data
between the CPU and the peripherals needs
to be synchronized.
There are three fundamental approaches:
1. polling or program control;
2. use of an interrupt system;
3. use an I/O processor (DMAC).

The more commonly adopted is the second
one.

Since the peripheral units operate
asynchronously and at a lower speed, with
respect to the CPU, the exchange of data
between the CPU and the peripherals needs
to be synchronized.
There are three fundamental approaches:
1. polling or program control;
2. use of an interrupt system;
3. use an I/O processor (DMAC).

The more commonly adopted is the second
one.

Simone Buso - Seminar 2 12

Program ControlProgram Control
In program control the CPU periodically polls
the peripheral unit status and data
registers.
When data are available or when the
peripheral unit is ready to receive data, the
CPU takes the required steps.
Then it begins polling the peripheral unit
again.
This approach is clearly not efficient,
because it implies a considerable waste of
CPU time.

In program control the CPU periodically polls
the peripheral unit status and data
registers.
When data are available or when the
peripheral unit is ready to receive data, the
CPU takes the required steps.
Then it begins polling the peripheral unit
again.
This approach is clearly not efficient,
because it implies a considerable waste of
CPU time.

3

Simone Buso - Seminar 2 13

InterruptsInterrupts
The availability of an interrupt system allows
the CPU to take care of other activities while
the peripheral units are active. When any
peripheral unit requires CPU intervention, e.g.
when there are data available for transfer, it
sends to the CPU an Interrupt Request (IR).
This signal causes the interruption of the CPU
activity and what is called a “context
switching”. After the acknowledgement of the
IR signal the CPU takes care of the
peripheral unit: an interrupt service routine,
ISR, is started.

The availability of an interrupt system allows
the CPU to take care of other activities while
the peripheral units are active. When any
peripheral unit requires CPU intervention, e.g.
when there are data available for transfer, it
sends to the CPU an Interrupt Request (IR).
This signal causes the interruption of the CPU
activity and what is called a “context
switching”. After the acknowledgement of the
IR signal the CPU takes care of the
peripheral unit: an interrupt service routine,
ISR, is started.

Simone Buso - Seminar 2 14

InterruptsInterrupts
Any interrupt system requires the presence
of at least a specific control line, that, once
asserted by the peripheral units, causes the
CPU context switching.

Any interrupt system requires the presence
of at least a specific control line, that, once
asserted by the peripheral units, causes the
CPU context switching.

Address
Bus

Address
Bus

CPUCPU
IRQIRQ

Data BusData Bus

DREGDREG

SREGSREG

CREGCREG

InterfaceInterface

IRQIRQ

PeripheralPeripheral

Simone Buso - Seminar 2 15

InterruptsInterrupts
Upon acknowledgement of an interrupt request
a typical sequence of events is started within
the CPU:
1. the current instruction is completed;
2. context is saved;
3. if possible, an interrupt service routine is

started;
4. context is restored and the main program

execution is continued.
Point 2 is particularly important: the CPU
needs to restore its state, once the interrupt
has been served.

Upon acknowledgement of an interrupt request
a typical sequence of events is started within
the CPU:
1. the current instruction is completed;
2. context is saved;
3. if possible, an interrupt service routine is

started;
4. context is restored and the main program

execution is continued.
Point 2 is particularly important: the CPU
needs to restore its state, once the interrupt
has been served.

Simone Buso - Seminar 2 16

Context savingContext saving
All interrupt systems require, at least, the
program counter (PC) and the CPU status
register (SR) to be saved.
Some processors allow to switch to an
alternative register bank, so that the original
content of the CPU registers is automatically
and rapidly preserved from any modification.
In other cases, the programmer must take
care of this, pushing the register contents
into a stack (normally implemented in memory)
at the beginning of the ISR and popping them
out at the end.

All interrupt systems require, at least, the
program counter (PC) and the CPU status
register (SR) to be saved.
Some processors allow to switch to an
alternative register bank, so that the original
content of the CPU registers is automatically
and rapidly preserved from any modification.
In other cases, the programmer must take
care of this, pushing the register contents
into a stack (normally implemented in memory)
at the beginning of the ISR and popping them
out at the end.

Simone Buso - Seminar 2 17

Interrupt Service RoutineInterrupt Service Routine

The interrupt service routine is nothing but a
subroutine, activated by the CPU upon the
acknowledgement of an interrupt request.
The subroutine includes all the instructions
required to take care of the peripheral unit’s
activities, allowing data exchange with the
CPU.
At the end of the ISR, a particular
instruction (normally named RTI or similarly)
makes the CPU restore the original activities.

The interrupt service routine is nothing but a
subroutine, activated by the CPU upon the
acknowledgement of an interrupt request.
The subroutine includes all the instructions
required to take care of the peripheral unit’s
activities, allowing data exchange with the
CPU.
At the end of the ISR, a particular
instruction (normally named RTI or similarly)
makes the CPU restore the original activities.

Simone Buso - Seminar 2 18

InterruptsInterrupts
Since various peripheral units can be
simultaneously active in any mC or DSP,
several problems require our attention:
1. identification of the peripheral unit that

sent the interrupt request signal;
2. simultaneous requests from different

units must be suitably managed;
3. interrupt requests occurring within

interrupt service routines need to be
managed (nested interrupts).

There are several different possible
solutions (i.e. hardware organizations).

Since various peripheral units can be
simultaneously active in any mC or DSP,
several problems require our attention:
1. identification of the peripheral unit that

sent the interrupt request signal;
2. simultaneous requests from different

units must be suitably managed;
3. interrupt requests occurring within

interrupt service routines need to be
managed (nested interrupts).

There are several different possible
solutions (i.e. hardware organizations).

4

Simone Buso - Seminar 2 19

Program ControlProgram Control
The first solution, used in past architectures,
exploits an interrupt status register, where
each single bit identifies a peripheral unit.
The peripheral unit that sends the interrupt
request also asserts its own bit in the status
register.
When the CPU acknowledges the IR signal, it
sequentially examines the bits of the status
register and thus finds out which peripheral
sent the IR signal. Then, the CPU calls the
appropriate interrupt service subroutine.

The first solution, used in past architectures,
exploits an interrupt status register, where
each single bit identifies a peripheral unit.
The peripheral unit that sends the interrupt
request also asserts its own bit in the status
register.
When the CPU acknowledges the IR signal, it
sequentially examines the bits of the status
register and thus finds out which peripheral
sent the IR signal. Then, the CPU calls the
appropriate interrupt service subroutine.

Simone Buso - Seminar 2 20

This solution also implicitly implements a
priority mechanism, since the status register
bits are read sequentially, in a given order. In
the same order the CPU serves possible
simultaneous interrupts requests. The
management of the status register is left to
the program, that has to de-assert the bit of
the served interrupt request, so as to avoid
dangerous loops.
This strategy is clearly not efficient, since
the reading of the interrupt status register
normally requires a significant amount of time.

This solution also implicitly implements a
priority mechanism, since the status register
bits are read sequentially, in a given order. In
the same order the CPU serves possible
simultaneous interrupts requests. The
management of the status register is left to
the program, that has to de-assert the bit of
the served interrupt request, so as to avoid
dangerous loops.
This strategy is clearly not efficient, since
the reading of the interrupt status register
normally requires a significant amount of time.

Program ControlProgram Control

Simone Buso - Seminar 2 21

Vectored InterruptsVectored Interrupts
A more efficient organization uses vectored
interrupts. In this case, the processor has
several interrupt lines (IRQ1, IRQ2, …), each
one is dedicated to a single peripheral (or to
a small group of peripherals). It can then
automatically activate the proper interrupt
sevice routine.
The simplest way to implement this
organization is to give the processor a specific
instruction, executed upon every IR signal
acknowledgement, that operates the
fundamental actions: push PC, jump rout_N.

A more efficient organization uses vectored
interrupts. In this case, the processor has
several interrupt lines (IRQ1, IRQ2, …), each
one is dedicated to a single peripheral (or to
a small group of peripherals). It can then
automatically activate the proper interrupt
sevice routine.
The simplest way to implement this
organization is to give the processor a specific
instruction, executed upon every IR signal
acknowledgement, that operates the
fundamental actions: push PC, jump rout_N.

Simone Buso - Seminar 2 22

The management of nested interrupts is also
possible, since the coding circuitry can allow
the generation of different priority IR signals.
The completion of pending requests must be
suitably taken care of, so that all possibly
interrupted subroutines are in any case
completed.
This requires a quite complex coding circuit
design, so that, sometimes, this is not located
inside the CPU, but constitutes, by itself
another on-chip peripheral unit.

The management of nested interrupts is also
possible, since the coding circuitry can allow
the generation of different priority IR signals.
The completion of pending requests must be
suitably taken care of, so that all possibly
interrupted subroutines are in any case
completed.
This requires a quite complex coding circuit
design, so that, sometimes, this is not located
inside the CPU, but constitutes, by itself
another on-chip peripheral unit.

Vectored InterruptsVectored Interrupts

Simone Buso - Seminar 2 23

CPUCPU

……

IRQ1IRQ1
IRQ2IRQ2
IRQ3IRQ3

IRQnIRQn

ISR AddressISR Address

CALL ISR_1CALL ISR_1

CALL ISR_2CALL ISR_2

CALL ISR_3CALL ISR_3

CALL ISR_iCALL ISR_i

CALL ISR_nCALL ISR_n

……
……

Priority
control
Priority
control

SS

RR QQ

IRQIRQ

STISTI

CLICLI
IEIE

Organization of a vectored interrupt system.Organization of a vectored interrupt system.

CoderCoder

memorymemory

In
te

rr
up

t
Ve

ct
or

In
te

rr
up

t
Ve

ct
or

0x00000x0000

0x00040x0004

……

0x00080x0008

Vectored InterruptsVectored Interrupts

Simone Buso - Seminar 2 24

Interrupts with daisy-chainInterrupts with daisy-chain
A different way to manage several interrupt
sources with only one IRQ line, is based on
the so called daisy-chain concept. It is a
particular hardware organization, that allows
the CPU to rapidly and automatically identify
the peripheral unit that sent the IRQ signal.
Upon the IRQ acknowledgement, the CPU
sends a signal (INTA) down the daisy chain
control line DCL. This signal propagates from
peripheral to peripheral, until it gets to the
one that asserted the IRQ line.

A different way to manage several interrupt
sources with only one IRQ line, is based on
the so called daisy-chain concept. It is a
particular hardware organization, that allows
the CPU to rapidly and automatically identify
the peripheral unit that sent the IRQ signal.
Upon the IRQ acknowledgement, the CPU
sends a signal (INTA) down the daisy chain
control line DCL. This signal propagates from
peripheral to peripheral, until it gets to the
one that asserted the IRQ line.

5

Simone Buso - Seminar 2 25

DCLDCL DCLDCL DCLDCL
IRQ1IRQ1 IRQ2IRQ2 IRQnIRQn

CPUCPU
IRQIRQ

INTAINTA INTAINTA INTAINTA

Int 1Int 1 Int 2Int 2 Int nInt n

Per 1Per 1 Per 2Per 2 Per nPer n

IACK1IACK1 IACK2IACK2 IACKnIACKn

InterfaceInterface

PeripheralsPeripherals

Organization of an interrupt system with
daisy-chain.
Organization of an interrupt system with
daisy-chain.

Interrupts with daisy-chainInterrupts with daisy-chain

Simone Buso - Seminar 2 26

DD
ClkClk

QQ

QQ

INTAIINTAI
INTAOINTAO

IRQIRQ IACKIACK

DCLDCL

Simplified schematic of DCL node.Simplified schematic of DCL node.

Interrupts with daisy-chainInterrupts with daisy-chain

Simone Buso - Seminar 2 27

When the peripheral that asserted the IRQ
line is reached by the INTA signal, it
prevents the signal from propagating further
down the DCL and generates the IACK signal.
Then, the interface circuit writes a
particular code onto the data bus, called
interrupt select, that allows the CPU to start
to the appropriate ISR.
This procedure also implies a priority coding
mechanism, because the peripherals are
served in the same order of their location
along the DCL.

When the peripheral that asserted the IRQ
line is reached by the INTA signal, it
prevents the signal from propagating further
down the DCL and generates the IACK signal.
Then, the interface circuit writes a
particular code onto the data bus, called
interrupt select, that allows the CPU to start
to the appropriate ISR.
This procedure also implies a priority coding
mechanism, because the peripherals are
served in the same order of their location
along the DCL.

Interrupts with daisy-chainInterrupts with daisy-chain

Simone Buso - Seminar 2 28

The daisy-chain organization is sometimes
used together with internal vectorization, to
allow the identification of a particular
peripheral unit within a small group,
associated to a particular processor interrupt
line.
In this case the interrupt system is said to be
externally vectorized, meaning that the CPU
has a smaller number of interrupt request
lines with respect to the number of connected
peripherals.

The daisy-chain organization is sometimes
used together with internal vectorization, to
allow the identification of a particular
peripheral unit within a small group,
associated to a particular processor interrupt
line.
In this case the interrupt system is said to be
externally vectorized, meaning that the CPU
has a smaller number of interrupt request
lines with respect to the number of connected
peripherals.

Interrupts with daisy-chainInterrupts with daisy-chain

Simone Buso - Seminar 2 29

Maskerable InterruptsMaskerable Interrupts
It is possible to prevent the CPU from being
interrupted by peripheral units during certain
time intervals, by masking the interrupt
sources. In pratice, the IRQ signal is disabled
by keeping the IE (Interrupt Enable) signal in
a low logic state. Sometimes, it is possible to
inhibit any single interrupt source individually.
All processors have at least an interrupt
source that cannot be masked (NMI). This can
be used to manage critical conditions, like, for
example, power supply failures.

It is possible to prevent the CPU from being
interrupted by peripheral units during certain
time intervals, by masking the interrupt
sources. In pratice, the IRQ signal is disabled
by keeping the IE (Interrupt Enable) signal in
a low logic state. Sometimes, it is possible to
inhibit any single interrupt source individually.
All processors have at least an interrupt
source that cannot be masked (NMI). This can
be used to manage critical conditions, like, for
example, power supply failures.

Simone Buso - Seminar 2 30

InterruptsInterrupts
The fundamental parameters of the interrupt
system of any mC or DSP are:
1. number of possible sources;
2. priority management;
3. context switching speed;
4. interrupt masking.

In real time control applications, the context
switching speed is often critical. Also crucial
is the possibility of protecting critical code
areas (also called critical regions) from
interrupts.

The fundamental parameters of the interrupt
system of any mC or DSP are:
1. number of possible sources;
2. priority management;
3. context switching speed;
4. interrupt masking.

In real time control applications, the context
switching speed is often critical. Also crucial
is the possibility of protecting critical code
areas (also called critical regions) from
interrupts.

6

Simone Buso - Seminar 2 31

InterruptsInterrupts

The more recent mCs and DSPs can count on
an internally vectored interrupt system.
The calling of the appropriate interrupt
service routine is mainly automatic, as is often
the saving of, at least, the fundamental CPU
registers.
This minimizes the latency time of the
interrupt, i.e. the time interval between the
interrupt request and the execution of the
first instruction of the interrupt service
routine.

The more recent mCs and DSPs can count on
an internally vectored interrupt system.
The calling of the appropriate interrupt
service routine is mainly automatic, as is often
the saving of, at least, the fundamental CPU
registers.
This minimizes the latency time of the
interrupt, i.e. the time interval between the
interrupt request and the execution of the
first instruction of the interrupt service
routine.

Simone Buso - Seminar 2 32

InterruptsInterrupts
The number of interrupt sources is normally
quite high (>10, but can be as high as 100)
and it is often possible to configure any single
interrupt source, defining its priority and, in
some cases, if it has to be vectored or not.
Different strategies can be found, as to the
management of priorities: in some processors
only simultaneous interrupt requests are taken
care of, others, more sophisticated, also allow
to implement nested interrupts: higher priority
requests can interrupt lower priority ISRs
(nesting).

The number of interrupt sources is normally
quite high (>10, but can be as high as 100)
and it is often possible to configure any single
interrupt source, defining its priority and, in
some cases, if it has to be vectored or not.
Different strategies can be found, as to the
management of priorities: in some processors
only simultaneous interrupt requests are taken
care of, others, more sophisticated, also allow
to implement nested interrupts: higher priority
requests can interrupt lower priority ISRs
(nesting).

Simone Buso - Seminar 2 33

InterruptsInterrupts

Example of an interrupt system that does
not allow interrupt nesting.
Example of an interrupt system that does
not allow interrupt nesting.

IRQ4IRQ4

Main
program
Main
program

IRQ1IRQ1

Latency
for IRQ1
Latency
for IRQ1

IRQ2IRQ2

Latency
for IRQ2
Latency
for IRQ2

IRQ3IRQ3

IRQ5IRQ5

Latency
for IRQ3
Latency
for IRQ3
Latency
for IRQ5
Latency
for IRQ5

ISR4ISR4

ISR1ISR1

ISR2ISR2

ISR3ISR3

ISR5ISR5

Simone Buso - Seminar 2 34

InterruptsInterrupts

Example of an interrupt system that allows
interrupt nesting.
Higher priority interrupts are served
immediately, the lower priority ones are
left pending.

Example of an interrupt system that allows
interrupt nesting.
Higher priority interrupts are served
immediately, the lower priority ones are
left pending.

IRQ1IRQ1

Main
program
Main
program

IRQ4IRQ4

IRQ4 is left
pending until the
end of ISR1

IRQ4 is left
pending until the
end of ISR1

IRQ1 interrupts
ISR4 because it has
higher priority

IRQ1 interrupts
ISR4 because it has
higher priority

Simone Buso - Seminar 2 35

Again the previous example, now in a
system that allows nesting.
Again the previous example, now in a
system that allows nesting.

IRQ4IRQ4

Main
program
Main
program

IRQ1IRQ1

IRQ2IRQ2

IRQ3IRQ3

IRQ5IRQ5

ISR4ISR4

ISR1ISR1

ISR2ISR2

ISR3ISR3

ISR5ISR5

Latency
for IRQ3
Latency
for IRQ3

Latency
for IRQ5
Latency
for IRQ5

InterruptsInterrupts

Simone Buso - Seminar 2 36

The two strategies are different, since with
nesting, a higher priority interrupt can be
served with minimum latency. Nesting may
penalize interrupts with low priority (as, in our
example, IRQ4, but not IRQ5).
Only when the different ISRs have all
relatively short duration, the strategy that
does not allow nesting may offer a good
performance level (maximum latency is small).
Indeed, this is the case for almost all DSPs
(exceptions: AD21xx DSP by Analog Devices
and Motorola 56F8xx).

The two strategies are different, since with
nesting, a higher priority interrupt can be
served with minimum latency. Nesting may
penalize interrupts with low priority (as, in our
example, IRQ4, but not IRQ5).
Only when the different ISRs have all
relatively short duration, the strategy that
does not allow nesting may offer a good
performance level (maximum latency is small).
Indeed, this is the case for almost all DSPs
(exceptions: AD21xx DSP by Analog Devices
and Motorola 56F8xx).

InterruptsInterrupts

7

Simone Buso - Seminar 2 37

LatencyLatency
It often very important to estimate the
maximum delay that can affect an interrupt
request, i.e. the interrupt maximum latency.
The interrupt latency always include an
intrinsic component (TLI), due to need to
complete the current instruction, save
(automatically or manually) the context i.e.
PC, SR, user registers, ...
However, interrupts with low priority may be
affected by latencies much higher than TLI.
In general, latency increases as priority
decreases.

It often very important to estimate the
maximum delay that can affect an interrupt
request, i.e. the interrupt maximum latency.
The interrupt latency always include an
intrinsic component (TLI), due to need to
complete the current instruction, save
(automatically or manually) the context i.e.
PC, SR, user registers, ...
However, interrupts with low priority may be
affected by latencies much higher than TLI.
In general, latency increases as priority
decreases.

Simone Buso - Seminar 2 38

LatencyLatency
In a system allowing nesting, the latency of a
n priority interrupt, in the worst case, can be
expressed by:

In a system allowing nesting, the latency of a
n priority interrupt, in the worst case, can be
expressed by:

TL_n = TLI +TL_n = TLI + ∑∑
i=1i=1

n-1n-1

Tex_iTex_i

where Tex_i represents the total execution
time of any ISR whose priority is higher than
n.
Note that the sum of all execution times is
actually independent of nesting being allowed
or not.

where Tex_i represents the total execution
time of any ISR whose priority is higher than
n.
Note that the sum of all execution times is
actually independent of nesting being allowed
or not.

Simone Buso - Seminar 2 39

In a system that does not allow nesting, the
latency of an n priority interrupt, in the worst
case, is instead given by:

In a system that does not allow nesting, the
latency of an n priority interrupt, in the worst
case, is instead given by:

TL_n = TLI +TL_n = TLI + ∑∑
i=1i=1

n-1n-1

Tex_iTex_iMax(Tex_j) +Max(Tex_j) +
j>nj>n

that is longer than the previous one. The
additional term is equal to the maximum among
the execution times of all the ISRs having
lower priority with respect to the considered
n priority one.

that is longer than the previous one. The
additional term is equal to the maximum among
the execution times of all the ISRs having
lower priority with respect to the considered
n priority one.

LatencyLatency

Simone Buso - Seminar 2 40

The highest priority interrupt has a latency
time that is often higher than TLI, even in a
system that allows nesting. This can be due
to, at least, two different causes:
1. interrupts have been disabled to protect

critical regions in main program (TCR);
2. a particularly complex (and time

consuming) instruction is being executed.
In the worst case, the total latency time of
the highest priority interrupt is equal to the
sum of the three terms (TLI + TCR + TINST).

The highest priority interrupt has a latency
time that is often higher than TLI, even in a
system that allows nesting. This can be due
to, at least, two different causes:
1. interrupts have been disabled to protect

critical regions in main program (TCR);
2. a particularly complex (and time

consuming) instruction is being executed.
In the worst case, the total latency time of
the highest priority interrupt is equal to the
sum of the three terms (TLI + TCR + TINST).

LatencyLatency

Simone Buso - Seminar 2 41

When a program segment has to be executed
sequentially, e.g. to guarantee a precise
temporization, it is necessary that all
interrupts are masked.
On the contrary, the duration of the program
critical region is not going to be constant, but
varies in an apparently random way, depending
on the occurrence of other interrupt requests.
This may generate non predictable
malfunctions such as jitter or glitch
phenomena, very difficult to troubleshoot.

When a program segment has to be executed
sequentially, e.g. to guarantee a precise
temporization, it is necessary that all
interrupts are masked.
On the contrary, the duration of the program
critical region is not going to be constant, but
varies in an apparently random way, depending
on the occurrence of other interrupt requests.
This may generate non predictable
malfunctions such as jitter or glitch
phenomena, very difficult to troubleshoot.

LatencyLatency

Simone Buso - Seminar 2 42

Interrupt DensityInterrupt Density
When a mC or DSP needs to take care of
various interrupt sources, for example N,
there may be a problem to guarantee that all
of them can be effectively served.
A necessary condition to make this happen is
that the following inequality is satisfied by
the interrupt system:

When a mC or DSP needs to take care of
various interrupt sources, for example N,
there may be a problem to guarantee that all
of them can be effectively served.
A necessary condition to make this happen is
that the following inequality is satisfied by
the interrupt system:

where Tp_i represents the minimum repetition
period of the i-th ISR.
where Tp_i represents the minimum repetition
period of the i-th ISR.

∑∑
i=1i=1

NN Tex_iTex_i

Tp_iTp_i
< 1< 1

8

Simone Buso - Seminar 2 43

The condition is not also sufficient, because it
does not take into account that higher priority
interrupts may combine in any sequence. A
particularly unfortunate one could prevent the
processor from serving the i-th interrupt in
all repetion periods Tp_i.
To make sure this does not happen, for each
interrupt source, we need to verify the so
called interval condition:

The condition is not also sufficient, because it
does not take into account that higher priority
interrupts may combine in any sequence. A
particularly unfortunate one could prevent the
processor from serving the i-th interrupt in
all repetion periods Tp_i.
To make sure this does not happen, for each
interrupt source, we need to verify the so
called interval condition:

Tex_i +Tex_i + ∑∑
k=1k=1

i-1i-1

Nk·Tex_kNk·Tex_kMax(Tex_j) +Max(Tex_j) +
j>ij>i

< Tp_i< Tp_i

Interrupt DensityInterrupt Density

Simone Buso - Seminar 2 44

The interval condition says that, for the i-th
interrupt, the sum of its total execution time,
of the maximum duration of any of the lower
priority interrupts (in a system where nesting
is not allowed) and of all the execution times
of all the ISRs relative to higher priority
interrupts (multiplied the number of times Nk
they may occur in period Tp_i) is in any case
lower than Tp_i. The formal definition for Nk
is:

The interval condition says that, for the i-th
interrupt, the sum of its total execution time,
of the maximum duration of any of the lower
priority interrupts (in a system where nesting
is not allowed) and of all the execution times
of all the ISRs relative to higher priority
interrupts (multiplied the number of times Nk
they may occur in period Tp_i) is in any case
lower than Tp_i. The formal definition for Nk
is:

Nk = INT((Tp_i - Tex_i)/Tp_k) + 1 Nk = INT((Tp_i - Tex_i)/Tp_k) + 1

Interrupt DensityInterrupt Density

Simone Buso - Seminar 2 45

IRQ8IRQ8

Main
program
Main
program

IRQ4IRQ4

Tp_4 Tp_4 Tp_4 Tp_4

IRQ2IRQ2

IRQ1IRQ1

Interval condition in an interrupt system
without nesting.
Interval condition in an interrupt system
without nesting.

Tex_4+Tex_8+Tex_2+Tex_1<Tp_4Tex_4+Tex_8+Tex_2+Tex_1<Tp_4

Interrupt DensityInterrupt Density

Simone Buso - Seminar 2 46

ProblemProblem
In a system with 2 interrupts (vectored with
priority 1 and 2, no nesting), the IRs of each
source occur every 100 µs. In the main
program we created a critical region whose
duration is 20 µs.
We want to know what are the possible
durations of the ISRs for the two interrupts.

We need to calculate the interval conditions
for the two interrupt service routines:

1. Tex_1 + Max(TRC,Tex_2) < 100 [µs]
2. TRC + Tex_2 + Tex_1 < 100 [µs]

In a system with 2 interrupts (vectored with
priority 1 and 2, no nesting), the IRs of each
source occur every 100 µs. In the main
program we created a critical region whose
duration is 20 µs.
We want to know what are the possible
durations of the ISRs for the two interrupts.

We need to calculate the interval conditions
for the two interrupt service routines:

1. Tex_1 + Max(TRC,Tex_2) < 100 [µs]
2. TRC + Tex_2 + Tex_1 < 100 [µs]

Simone Buso - Seminar 2 47

ProblemProblem
We see that the second condition is more
restrictive than the first one. Thus, the limit
condition on the durations is given by:

Tex_2 + Tex_1 < 80 [µs]

We see that the second condition is more
restrictive than the first one. Thus, the limit
condition on the durations is given by:

Tex_2 + Tex_1 < 80 [µs]

T
ex

_2
T

ex
_2

[µs][µs]

[µs][µs]Tex_1Tex_1

8080

8080

The values falling within
the shaded area satisfy
both the interval
conditions and represent
solutions for our problem.

The values falling within
the shaded area satisfy
both the interval
conditions and represent
solutions for our problem.

Simone Buso - Seminar 2 48

Direct Memory AccessDirect Memory Access
The DMA approach is the most efficient
solution to interface the CPU with a given set
of I/O peripherals. It basically consists of an
additional bus controller, named DMAC, that,
once programmed, takes care of data
transfers to/from the peripheral units without
CPU intervention.
This approach is also the only viable one for
those peripherals whose speed is comparable
with the CPU’s one.
However, it is a fairly expensive solution, only
used in high end devices.

The DMA approach is the most efficient
solution to interface the CPU with a given set
of I/O peripherals. It basically consists of an
additional bus controller, named DMAC, that,
once programmed, takes care of data
transfers to/from the peripheral units without
CPU intervention.
This approach is also the only viable one for
those peripherals whose speed is comparable
with the CPU’s one.
However, it is a fairly expensive solution, only
used in high end devices.

9

Simone Buso - Seminar 2 49

Direct Memory AccessDirect Memory Access
The DMAC is extremely useful in all those
cases where a peripheral unit produces large
amounts of data to move into memory.
The DMAC takes care of all the data moves
controlling the data and address buses
independently from the CPU, that is left free
to execute other operations.
The move operation can be done on single
pieces of data (cycle stealing) or on data
blocks (burst mode).
When the DMAC is active the CPU cannot
access the bus and so operate on memory.

The DMAC is extremely useful in all those
cases where a peripheral unit produces large
amounts of data to move into memory.
The DMAC takes care of all the data moves
controlling the data and address buses
independently from the CPU, that is left free
to execute other operations.
The move operation can be done on single
pieces of data (cycle stealing) or on data
blocks (burst mode).
When the DMAC is active the CPU cannot
access the bus and so operate on memory.

Simone Buso - Seminar 2 50

Direct Memory AccessDirect Memory Access
That’s why the DMAC is normally used in
association with a cache memory. This allows
the CPU to continue its computations
indipendentely from the DMAC, unless the
data stored in the cache are modified by the
DMAC in main memory (cache update problem).
The DMAC programming normally consists in
the indication of a memory address and of the
number of data that need to be moved from
that address on. When the data transfer is
complete, the DMAC normally generates an
interrupt.

That’s why the DMAC is normally used in
association with a cache memory. This allows
the CPU to continue its computations
indipendentely from the DMAC, unless the
data stored in the cache are modified by the
DMAC in main memory (cache update problem).
The DMAC programming normally consists in
the indication of a memory address and of the
number of data that need to be moved from
that address on. When the data transfer is
complete, the DMAC normally generates an
interrupt.

Simone Buso - Seminar 2 51

Direct Memory AccessDirect Memory Access
A DMAC can normally take care of more than
a single I/O peripheral, since it normally has
more parallel channels.
A high performance DMAC for instance is the
one built into the TMS320C4x DSP: it is able
to complete a data transfer to and from
memory in any clock cycle, without interfering
with the processor. It is able to manage up to
6 simultaneuos data transfers (6 channels).
Similar devices are on board the 96002 DSP
series by Motorola and the ADSP-2106x (and
higher) by Analog Devices.

A DMAC can normally take care of more than
a single I/O peripheral, since it normally has
more parallel channels.
A high performance DMAC for instance is the
one built into the TMS320C4x DSP: it is able
to complete a data transfer to and from
memory in any clock cycle, without interfering
with the processor. It is able to manage up to
6 simultaneuos data transfers (6 channels).
Similar devices are on board the 96002 DSP
series by Motorola and the ADSP-2106x (and
higher) by Analog Devices.

Simone Buso - Seminar 2 52

Direct Memory AccessDirect Memory Access

CPUCPU memoriamemoria DMACDMAC

ADREGADREG

CounterCounter

ControllerController

I/O (e.g.
CODEC)

I/O (e.g.
CODEC)

AddressAddress DataData AddressAddress DataData AddressAddress DataData

Bus switchBus switchBus switchBus switch Bus switchBus switch

Data BusData Bus

Address BusAddress Bus

Simplified structure of a DMAC systemSimplified structure of a DMAC system

DMAGrantDMAGrant

DMARequestDMARequest

Enable CPUEnable CPU

Enable DMAEnable DMA

TransferGrantTransferGrantTransferRequestTransferRequest

Simone Buso - Seminar 2 53

Direct Memory AccessDirect Memory Access
The operation protocol of the DMAC is the
following:
1. the peripheral asks the DMAC permission to

start a data transfer (TransferReq.).
2. the DMAC asks the CPU permission to take

control of the buses (DMAReq.).
3. the CPU grants use of the buses: the

switches cut the CPU off and connect DMAC
and peripheral (DMAGrant) to memory.

4. the DMAC sets the address bus e allows
the peripheral to read/write data
(TransferGrant) into memory.

The operation protocol of the DMAC is the
following:
1. the peripheral asks the DMAC permission to

start a data transfer (TransferReq.).
2. the DMAC asks the CPU permission to take

control of the buses (DMAReq.).
3. the CPU grants use of the buses: the

switches cut the CPU off and connect DMAC
and peripheral (DMAGrant) to memory.

4. the DMAC sets the address bus e allows
the peripheral to read/write data
(TransferGrant) into memory.

