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InterruptsInterrupts
Each microprocessor system is characterized 
by the same fundamental components, that 
are: 
1. Aritmetic Logic Unit (ALU) 
2. Control Unit
3. Memory 
4. I/O peripheral units 

The management of the I/O subsystem can be 
operated using different strategies. The more 
commonly encounterd in mCs and DSPs (for 
real time control applications) is based on 
interrupts.
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In some simple cases, a program controlled
management of the peripheral units is 
preferable.
This technique (called “polling”) is by far less 
efficient with respect to the use of 
interrupts.
Besides, some DSPs and top range mCs, allow 
the use of a dedicated I/O processor, called 
DMAC (Direct Memory Access Controller). 
This allows the management of the I/O 
subsystem with the minimum use of the CPU 
time.
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I/O SubsystemI/O Subsystem

I/O subsystem organization. The various 
peripheral units are connected to the bus by 
a suitable interface circuit.
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a suitable interface circuit.
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The interface circuit takes care of logical
and, if required, electrical adaptation between 
the peripheral units and the CPU. Each 
peripheral unit operates asynchronously with 
respect to the CPU.
The interface must therefore include 
different registers (I/O ports) to:
1. allow data exchange with the CPU;
2. allow configuration of the peripheral unit;
3. keep trace of peripheral unit status.
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Control register CREG and status register 
SREG are often made up of a few bits only 
and so are often part of the same memory 
location. Also DREG registers have sometimes 
a different size with respect to the CPU 
word (for instance in ADCs).
These registers must be read and written.
There are two different possible 
organizations:
1. memory mapped I/O;
2. isolated I/O.
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Memory mapped I/OMemory mapped I/O

Memory mapped I/O organizations consider 
the peripheral unit registers as if they were 
conventional memory locations, which do not 
require specific instructions to be read 
and/or written. This strategy is often used in 
mCs and DSPs.
Its implementation simply require the 
connection of peripheral units to some 
particular address bus lines, that, thanks to 
decoding circuits (multiplexers), select the 
different units straightforwardly. 
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Isolated I/OIsolated I/O
The organization with isolated input/output
is instead based on specific instructions to 
program and manage the different 
peripheral units.
The execution of these instructions require 
the same address bus management of 
conventional instructions. Differently from 
these, they require dedicated control lines
to operate on the various peripheral units. 
This tecnique is no longer used in modern 
mCs and DSPs.
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Typical peripheral unitsTypical peripheral units
mCs and DSPs for embedded control 
applications are typically characterized by 
the same peripheral units such as:
1. A/D converters and, sometimes, DACs;
2. timer and counters (PWM modulators);
3. communication modules (serial 

interfaces, field bus drivers, …);
4. encoder interfaces;
5. display interfaces (only in mCs);
6. external memory drivers (DRAM rarely). 
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SynchronizationSynchronization
Since the peripheral units operate 
asynchronously and at a lower speed, with 
respect to the CPU, the exchange of data 
between the CPU and the peripherals needs 
to be synchronized.
There are three fundamental approaches:
1. polling or program control;
2. use of an interrupt system;
3. use an I/O processor (DMAC).

The more commonly adopted is the second 
one.
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Program ControlProgram Control
In program control the CPU periodically polls
the peripheral unit status and data 
registers. 
When data are available or when the 
peripheral unit is ready to receive data, the 
CPU takes the required steps.
Then it begins polling the peripheral unit 
again.
This approach is clearly not efficient, 
because it implies a considerable waste of 
CPU time.

In program control the CPU periodically polls
the peripheral unit status and data 
registers. 
When data are available or when the 
peripheral unit is ready to receive data, the 
CPU takes the required steps.
Then it begins polling the peripheral unit 
again.
This approach is clearly not efficient, 
because it implies a considerable waste of 
CPU time.



3

Simone Buso - Seminar 2 13

InterruptsInterrupts
The availability of an interrupt system allows 
the CPU to take care of other activities while 
the peripheral units are active. When any 
peripheral unit requires CPU intervention, e.g. 
when there are data available for transfer, it 
sends to the CPU an Interrupt Request (IR).
This signal causes the interruption of the CPU 
activity and what is called a “context 
switching”. After the acknowledgement of the 
IR signal the CPU takes care of the 
peripheral unit: an interrupt service routine,
ISR, is started.
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InterruptsInterrupts
Any interrupt system requires the presence 
of at least a specific control line, that, once 
asserted by the peripheral units, causes the 
CPU context switching.
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CPU context switching.
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InterruptsInterrupts
Upon acknowledgement of an interrupt request 
a typical sequence of events is started within 
the CPU:
1. the current instruction is completed;
2. context is saved;
3. if possible, an interrupt service routine is 

started;
4. context is restored and the main program 

execution is continued.
Point 2 is particularly important: the CPU 
needs to restore its state, once the interrupt 
has been served.
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Context savingContext saving
All interrupt systems require, at least, the 
program counter (PC) and the CPU status 
register (SR) to be saved.
Some processors allow to switch to an 
alternative register bank, so that the original 
content of the CPU registers is automatically 
and rapidly preserved from any modification.
In other cases, the programmer must take 
care of this, pushing the register contents 
into a stack (normally implemented in memory) 
at the beginning of the ISR and popping them 
out at the end.
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Interrupt Service RoutineInterrupt Service Routine

The interrupt service routine is nothing but a 
subroutine, activated by the CPU upon the 
acknowledgement of an interrupt request.
The subroutine includes all the instructions 
required to take care of the peripheral unit’s 
activities, allowing data exchange with the 
CPU. 
At the end of the ISR, a particular
instruction (normally named RTI or similarly)
makes the CPU restore the original activities. 
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InterruptsInterrupts
Since various peripheral units can be 
simultaneously active in any mC or DSP, 
several problems require our attention:
1. identification of the peripheral unit that 

sent the interrupt request signal;
2. simultaneous requests from different 

units must be suitably managed;
3. interrupt requests occurring within 

interrupt service routines need to be 
managed (nested interrupts).

There are several different possible 
solutions (i.e. hardware organizations).
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Program ControlProgram Control
The first solution, used in past architectures, 
exploits an interrupt status register, where 
each single bit identifies a peripheral unit.  
The peripheral unit that sends the interrupt 
request also asserts its own bit in the status 
register.
When the CPU acknowledges the IR signal, it 
sequentially examines the bits of the status 
register and thus finds out which peripheral 
sent the IR signal. Then, the CPU calls the 
appropriate interrupt service subroutine.
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This solution also implicitly implements a 
priority mechanism, since the status register 
bits are read sequentially, in a given order. In 
the same order the CPU serves possible 
simultaneous interrupts requests. The 
management of the status register is left to 
the program, that has to de-assert the bit of 
the served interrupt request, so as to avoid 
dangerous loops. 
This strategy is clearly not efficient, since 
the reading of the interrupt status register 
normally requires a significant amount of time.
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Program ControlProgram Control
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Vectored InterruptsVectored Interrupts
A more efficient organization uses vectored 
interrupts. In this case, the processor has 
several interrupt lines (IRQ1, IRQ2, …), each 
one is dedicated to a single peripheral (or to 
a small group of peripherals). It can then 
automatically activate the proper interrupt 
sevice routine.
The simplest way to implement this 
organization is to give the processor a specific 
instruction, executed upon every IR signal 
acknowledgement, that operates the 
fundamental actions: push PC, jump rout_N.
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The management of nested interrupts is also 
possible, since the coding circuitry can allow 
the generation of different priority IR signals.
The completion of pending requests must be 
suitably taken care of, so that all possibly 
interrupted subroutines are in any case 
completed.
This requires a quite complex coding circuit 
design, so that, sometimes, this is not located 
inside the CPU, but constitutes, by itself 
another on-chip peripheral unit.
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Vectored InterruptsVectored Interrupts
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Interrupts with daisy-chainInterrupts with daisy-chain
A different way to manage several interrupt 
sources with only one IRQ line, is based on 
the so called daisy-chain concept. It is a 
particular hardware organization, that allows 
the CPU to rapidly and automatically identify 
the peripheral unit that sent the IRQ signal. 
Upon the IRQ acknowledgement, the CPU 
sends a signal (INTA) down the daisy chain 
control line DCL. This signal propagates from 
peripheral to peripheral, until it gets to the 
one that asserted the IRQ line.
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When the peripheral that asserted the IRQ 
line is reached by the INTA signal, it 
prevents the signal from propagating further 
down the DCL and generates the IACK signal. 
Then, the interface circuit writes a 
particular code onto the data bus, called 
interrupt select, that allows the CPU to start 
to the appropriate ISR.
This procedure also implies a priority coding 
mechanism, because the peripherals are 
served in the same order of their location 
along the DCL. 
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served in the same order of their location 
along the DCL. 
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Simone Buso - Seminar 2 28

The daisy-chain organization is sometimes 
used together with internal vectorization, to 
allow the identification of a particular 
peripheral unit within a small group, 
associated to a particular processor interrupt 
line.
In this case the interrupt system is said to be 
externally vectorized, meaning that the CPU 
has a smaller number of interrupt request 
lines with respect to the number of connected 
peripherals.
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allow the identification of a particular 
peripheral unit within a small group, 
associated to a particular processor interrupt 
line.
In this case the interrupt system is said to be 
externally vectorized, meaning that the CPU 
has a smaller number of interrupt request 
lines with respect to the number of connected 
peripherals.

Interrupts with daisy-chainInterrupts with daisy-chain
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Maskerable InterruptsMaskerable Interrupts
It is possible to prevent the CPU from being 
interrupted by peripheral units during certain 
time intervals, by masking the interrupt 
sources. In pratice, the IRQ signal is disabled 
by keeping the IE (Interrupt Enable) signal in 
a low logic state. Sometimes, it is possible to 
inhibit any single interrupt source individually.
All processors have at least an interrupt 
source that cannot be masked (NMI). This can 
be used to manage critical conditions, like, for 
example, power supply failures. 
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InterruptsInterrupts
The fundamental parameters of the interrupt 
system of any mC or DSP are:
1. number of possible sources; 
2. priority management;
3. context switching speed;
4. interrupt masking.

In real time control applications, the context 
switching speed is often critical. Also crucial 
is the possibility of protecting critical code 
areas (also called critical regions) from 
interrupts. 
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InterruptsInterrupts

The more recent mCs and DSPs can count on 
an internally vectored interrupt system.
The calling of the appropriate interrupt 
service routine is mainly automatic, as is often 
the saving of, at least, the fundamental CPU 
registers.
This minimizes the latency time of the 
interrupt, i.e. the time interval between the 
interrupt request and the execution of the 
first instruction of the interrupt service 
routine.
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the saving of, at least, the fundamental CPU 
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first instruction of the interrupt service 
routine.
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InterruptsInterrupts
The number of interrupt sources is normally 
quite high (>10, but can be as high as 100) 
and it is often possible to configure any single 
interrupt source, defining its priority and, in 
some cases, if it has to be vectored or not.
Different strategies can be found, as to the 
management of priorities: in some processors 
only simultaneous interrupt requests are taken 
care of, others, more sophisticated, also allow 
to implement nested interrupts: higher priority 
requests can interrupt lower priority ISRs 
(nesting).
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interrupt source, defining its priority and, in 
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requests can interrupt lower priority ISRs 
(nesting).
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InterruptsInterrupts

Example of an interrupt system that does 
not allow interrupt nesting.
Example of an interrupt system that does 
not allow interrupt nesting.
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InterruptsInterrupts

Example of an interrupt system that allows
interrupt nesting.
Higher priority interrupts are served 
immediately, the lower priority ones are 
left pending.

Example of an interrupt system that allows
interrupt nesting.
Higher priority interrupts are served 
immediately, the lower priority ones are 
left pending.
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higher priority

IRQ1 interrupts 
ISR4 because it has 
higher priority
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Again the previous example, now in a 
system that allows nesting.
Again the previous example, now in a 
system that allows nesting.
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InterruptsInterrupts
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The two strategies are different, since with 
nesting, a higher priority interrupt can be 
served with minimum latency. Nesting may 
penalize interrupts with low priority (as, in our 
example, IRQ4, but not IRQ5).
Only when the different ISRs have all 
relatively short duration, the strategy that 
does not allow nesting may offer a good 
performance level (maximum latency is small).
Indeed, this is the case for almost all DSPs 
(exceptions: AD21xx DSP by Analog Devices 
and Motorola 56F8xx). 

The two strategies are different, since with 
nesting, a higher priority interrupt can be 
served with minimum latency. Nesting may 
penalize interrupts with low priority (as, in our 
example, IRQ4, but not IRQ5).
Only when the different ISRs have all 
relatively short duration, the strategy that 
does not allow nesting may offer a good 
performance level (maximum latency is small).
Indeed, this is the case for almost all DSPs 
(exceptions: AD21xx DSP by Analog Devices 
and Motorola 56F8xx). 

InterruptsInterrupts
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LatencyLatency
It often very important to estimate the 
maximum delay that can affect an interrupt 
request, i.e. the interrupt maximum latency.
The interrupt latency always include an 
intrinsic component (TLI), due to need to 
complete the current instruction, save 
(automatically or manually) the context i.e. 
PC, SR, user registers, ... 
However, interrupts with low priority may be 
affected by latencies much higher than TLI. 
In general, latency increases as priority 
decreases. 
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PC, SR, user registers, ... 
However, interrupts with low priority may be 
affected by latencies much higher than TLI. 
In general, latency increases as priority 
decreases. 
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LatencyLatency
In a system allowing nesting, the latency of a 
n priority interrupt, in the worst case, can be 
expressed by:

In a system allowing nesting, the latency of a 
n priority interrupt, in the worst case, can be 
expressed by:

TL_n = TLI +TL_n = TLI + ∑∑
i=1i=1

n-1n-1

Tex_iTex_i

where Tex_i represents the total execution 
time of any ISR whose priority is higher than 
n.
Note that the sum of all execution times is 
actually independent of nesting being allowed 
or not.

where Tex_i represents the total execution 
time of any ISR whose priority is higher than 
n.
Note that the sum of all execution times is 
actually independent of nesting being allowed 
or not.
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In a system that does not allow nesting, the 
latency of an n priority interrupt, in the worst 
case, is instead given by:

In a system that does not allow nesting, the 
latency of an n priority interrupt, in the worst 
case, is instead given by:

TL_n = TLI +TL_n = TLI + ∑∑
i=1i=1

n-1n-1

Tex_iTex_iMax(Tex_j) +Max(Tex_j) +
j>nj>n

that is longer than the previous one. The 
additional term is equal to the maximum among 
the execution times of all the ISRs having 
lower priority with respect to the considered 
n priority one. 

that is longer than the previous one. The 
additional term is equal to the maximum among 
the execution times of all the ISRs having 
lower priority with respect to the considered 
n priority one. 

LatencyLatency
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The highest priority interrupt has a latency 
time that is often higher than TLI, even in a 
system that allows nesting. This can be due 
to, at least, two different causes:
1. interrupts have been disabled to protect  

critical regions in main program (TCR);
2. a particularly complex (and time 

consuming) instruction is being executed.
In the worst case, the total latency time of 
the highest priority interrupt is equal to the 
sum of the three terms (TLI + TCR + TINST).
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to, at least, two different causes:
1. interrupts have been disabled to protect  

critical regions in main program (TCR);
2. a particularly complex (and time 

consuming) instruction is being executed.
In the worst case, the total latency time of 
the highest priority interrupt is equal to the 
sum of the three terms (TLI + TCR + TINST).

LatencyLatency
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When a program segment has to be executed  
sequentially, e.g. to guarantee a precise 
temporization, it is necessary that all  
interrupts are masked.
On the contrary, the duration of the program   
critical region is not going to be constant, but 
varies in an apparently random way, depending 
on the occurrence of other interrupt requests.
This may generate non predictable 
malfunctions such as jitter or glitch
phenomena, very difficult to troubleshoot.

When a program segment has to be executed  
sequentially, e.g. to guarantee a precise 
temporization, it is necessary that all  
interrupts are masked.
On the contrary, the duration of the program   
critical region is not going to be constant, but 
varies in an apparently random way, depending 
on the occurrence of other interrupt requests.
This may generate non predictable 
malfunctions such as jitter or glitch
phenomena, very difficult to troubleshoot.

LatencyLatency
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Interrupt DensityInterrupt Density
When a mC or DSP needs to take care of 
various interrupt sources, for example N,
there may be a problem to guarantee that all 
of them can be effectively served.
A necessary condition to make this happen is 
that the following inequality is satisfied by 
the interrupt system:

When a mC or DSP needs to take care of 
various interrupt sources, for example N,
there may be a problem to guarantee that all 
of them can be effectively served.
A necessary condition to make this happen is 
that the following inequality is satisfied by 
the interrupt system:

where Tp_i represents the minimum repetition 
period of the i-th ISR. 
where Tp_i represents the minimum repetition 
period of the i-th ISR. 

∑∑
i=1i=1

NN Tex_iTex_i

Tp_iTp_i
< 1< 1
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The condition is not also sufficient, because it 
does not take into account that higher priority 
interrupts may combine in any sequence. A 
particularly unfortunate one could prevent the 
processor from serving the i-th interrupt in 
all repetion periods Tp_i.
To make sure this does not happen, for each 
interrupt source, we need to verify the so 
called interval condition:

The condition is not also sufficient, because it 
does not take into account that higher priority 
interrupts may combine in any sequence. A 
particularly unfortunate one could prevent the 
processor from serving the i-th interrupt in 
all repetion periods Tp_i.
To make sure this does not happen, for each 
interrupt source, we need to verify the so 
called interval condition:

Tex_i +Tex_i + ∑∑
k=1k=1

i-1i-1

Nk·Tex_kNk·Tex_kMax(Tex_j) +Max(Tex_j) +
j>ij>i

< Tp_i< Tp_i

Interrupt DensityInterrupt Density
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The interval condition says that, for the i-th 
interrupt, the sum of its total execution time,
of the maximum duration of any of the lower 
priority interrupts (in a system where nesting 
is not allowed) and of all the execution times 
of all the ISRs relative to higher priority 
interrupts (multiplied the number of times Nk
they may occur in period Tp_i) is in any case
lower than Tp_i. The formal definition for Nk
is:

The interval condition says that, for the i-th 
interrupt, the sum of its total execution time,
of the maximum duration of any of the lower 
priority interrupts (in a system where nesting 
is not allowed) and of all the execution times 
of all the ISRs relative to higher priority 
interrupts (multiplied the number of times Nk
they may occur in period Tp_i) is in any case
lower than Tp_i. The formal definition for Nk
is:

Nk = INT((Tp_i - Tex_i)/Tp_k) + 1 Nk = INT((Tp_i - Tex_i)/Tp_k) + 1 

Interrupt DensityInterrupt Density
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IRQ8IRQ8

Main 
program
Main 
program

IRQ4IRQ4

Tp_4 Tp_4 Tp_4 Tp_4

IRQ2IRQ2

IRQ1IRQ1

Interval condition in an interrupt system 
without nesting. 
Interval condition in an interrupt system 
without nesting. 

Tex_4+Tex_8+Tex_2+Tex_1<Tp_4Tex_4+Tex_8+Tex_2+Tex_1<Tp_4

Interrupt DensityInterrupt Density
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ProblemProblem
In a system with 2 interrupts (vectored with 
priority 1 and 2, no nesting), the IRs of each 
source occur every 100 µs. In the main 
program we created a critical region whose 
duration is 20 µs.
We want to know what are the possible 
durations of the ISRs for the two interrupts.

We need to calculate the interval conditions 
for the two interrupt service routines:

1. Tex_1 + Max(TRC,Tex_2) < 100 [µs]
2. TRC + Tex_2 + Tex_1 < 100 [µs]

In a system with 2 interrupts (vectored with 
priority 1 and 2, no nesting), the IRs of each 
source occur every 100 µs. In the main 
program we created a critical region whose 
duration is 20 µs.
We want to know what are the possible 
durations of the ISRs for the two interrupts.

We need to calculate the interval conditions 
for the two interrupt service routines:

1. Tex_1 + Max(TRC,Tex_2) < 100 [µs]
2. TRC + Tex_2 + Tex_1 < 100 [µs]
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ProblemProblem
We see that the second condition is more 
restrictive than the first one. Thus, the limit 
condition on the durations is given by:

Tex_2 + Tex_1 < 80 [µs]

We see that the second condition is more 
restrictive than the first one. Thus, the limit 
condition on the durations is given by:

Tex_2 + Tex_1 < 80 [µs]

T
ex

_2
T

ex
_2

[µs][µs]

[µs][µs]Tex_1Tex_1

8080

8080

The values falling within 
the shaded area satisfy 
both the interval 
conditions and represent 
solutions for our problem.

The values falling within 
the shaded area satisfy 
both the interval 
conditions and represent 
solutions for our problem.
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Direct Memory AccessDirect Memory Access
The DMA approach is the most efficient
solution to interface the CPU with a given set 
of I/O peripherals. It basically consists of an 
additional bus controller, named DMAC, that, 
once programmed, takes care of data 
transfers to/from the peripheral units without 
CPU intervention.
This approach is also the only viable one for 
those peripherals whose speed is comparable
with the CPU’s one.
However, it is a fairly expensive solution, only 
used in high end devices.

The DMA approach is the most efficient
solution to interface the CPU with a given set 
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additional bus controller, named DMAC, that, 
once programmed, takes care of data 
transfers to/from the peripheral units without 
CPU intervention.
This approach is also the only viable one for 
those peripherals whose speed is comparable
with the CPU’s one.
However, it is a fairly expensive solution, only 
used in high end devices.
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Direct Memory AccessDirect Memory Access
The DMAC is extremely useful in all those 
cases where a peripheral unit produces large 
amounts of data to move into memory.
The DMAC takes care of all the data moves 
controlling the data and address buses
independently from the CPU, that is left free 
to execute other operations.
The move operation can be done on single 
pieces of data (cycle stealing) or on data
blocks (burst mode).
When the DMAC is active the CPU cannot 
access the bus and so operate on memory.

The DMAC is extremely useful in all those 
cases where a peripheral unit produces large 
amounts of data to move into memory.
The DMAC takes care of all the data moves 
controlling the data and address buses
independently from the CPU, that is left free 
to execute other operations.
The move operation can be done on single 
pieces of data (cycle stealing) or on data
blocks (burst mode).
When the DMAC is active the CPU cannot 
access the bus and so operate on memory.

Simone Buso - Seminar 2 50

Direct Memory AccessDirect Memory Access
That’s why the DMAC is normally used in 
association with a cache memory. This allows 
the CPU to continue its computations 
indipendentely from the DMAC, unless the 
data stored in the cache are modified by the  
DMAC in main memory (cache update problem).
The DMAC programming normally consists in 
the indication of a memory address and of the  
number of data that need to be moved from 
that address on. When the data transfer is 
complete, the DMAC normally generates an 
interrupt.

That’s why the DMAC is normally used in 
association with a cache memory. This allows 
the CPU to continue its computations 
indipendentely from the DMAC, unless the 
data stored in the cache are modified by the  
DMAC in main memory (cache update problem).
The DMAC programming normally consists in 
the indication of a memory address and of the  
number of data that need to be moved from 
that address on. When the data transfer is 
complete, the DMAC normally generates an 
interrupt.
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Direct Memory AccessDirect Memory Access
A DMAC can normally take care of more than 
a single I/O peripheral, since it normally has 
more parallel channels.
A high performance DMAC for instance is the 
one built into the TMS320C4x DSP: it is able 
to complete a data transfer to and from 
memory in any clock cycle, without interfering 
with the processor. It is able to manage up to  
6 simultaneuos data transfers (6 channels).
Similar devices are on board the 96002 DSP 
series by Motorola and the ADSP-2106x (and 
higher) by Analog Devices. 

A DMAC can normally take care of more than 
a single I/O peripheral, since it normally has 
more parallel channels.
A high performance DMAC for instance is the 
one built into the TMS320C4x DSP: it is able 
to complete a data transfer to and from 
memory in any clock cycle, without interfering 
with the processor. It is able to manage up to  
6 simultaneuos data transfers (6 channels).
Similar devices are on board the 96002 DSP 
series by Motorola and the ADSP-2106x (and 
higher) by Analog Devices. 
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Direct Memory AccessDirect Memory Access

CPUCPU memoriamemoria DMACDMAC

ADREGADREG

CounterCounter

ControllerController

I/O (e.g. 
CODEC)

I/O (e.g. 
CODEC)

AddressAddress DataData AddressAddress DataData AddressAddress DataData

Bus switchBus switchBus switchBus switch Bus switchBus switch

Data BusData Bus

Address BusAddress Bus

Simplified structure of a DMAC systemSimplified structure of a DMAC system

DMAGrantDMAGrant

DMARequestDMARequest

Enable CPUEnable CPU

Enable DMAEnable DMA

TransferGrantTransferGrantTransferRequestTransferRequest
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Direct Memory AccessDirect Memory Access
The operation protocol of the DMAC is the 
following:
1. the peripheral asks the DMAC permission to 

start a data transfer (TransferReq.).
2. the DMAC asks the CPU permission to take 

control of the buses (DMAReq.).
3. the CPU grants use of the buses: the 

switches cut the CPU off and connect DMAC 
and peripheral (DMAGrant) to memory.

4. the DMAC sets the address bus e allows 
the peripheral to read/write data 
(TransferGrant) into memory. 

The operation protocol of the DMAC is the 
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the peripheral to read/write data 
(TransferGrant) into memory. 


