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Goal of the workGoal of the work

Investigation of selective control  on output
voltage harmonics.
Motivations:
• reduction of voltage distortion in AC Power

Supplies (even with limited voltage loop
bandwidth);
• refinements aimed at an efficient

implementation in fixed-point DSP’s (here
tested on ADMC401 by Analog Devices).
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Presentation outlinePresentation outline

• Review of synchronous reference frame
harmonic regulation

• Decomposition in three-layer control
scheme

• A modified solution based on Discrete
Fourier Transform

• Design guidelines for regulator parameters
• DSP implementation using ADMC401
• Experimental results
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Basic schemeBasic scheme
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Equivalence with stationary frame controlEquivalence with stationary frame control
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• If Regk(s) is a integral regulator, the previous
equivalence implies that RegkAC(s) is a band-
pass filter centered on the kth harmonic
frequency.

• This is true if and only if both direct and reverse
sequence controllers are implemented.

• It is possible to implement synchronous
regulators either in the dq rotating frame or in
the αβαβαβαβ stationary frame, with perfectly equivalent
performance.

• If Regk(s) is a integral regulator, the previous
equivalence implies that RegkAC(s) is a band-
pass filter centered on the kth harmonic
frequency.

• This is true if and only if both direct and reverse
sequence controllers are implemented.

• It is possible to implement synchronous
regulators either in the dq rotating frame or in
the αβαβαβαβ stationary frame, with perfectly equivalent
performance.

Equivalence with stationary frame controlEquivalence with stationary frame control
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Equivalence with stationary frame controlEquivalence with stationary frame control

• The leading angle φφφφk can be used to
compensate for internal delays, such as that of
the current controller.

• In practice, the current reference is phase
shifted to compensate for the current
controller delay.

• In the stationary frame implementation, based
on band-pass filters, this may or may not have
a possible equivalent (depending on the
regulator structure).
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Three-layer decompositionThree-layer decomposition
AC Power Supplies requirements

• Fast transient response with limited
overshoot under load changes;

• Possibly fast regulation of  output voltage
fundamental harmonic component;

• For distorting loads with slowly-varying
harmonics, harmonic control in some
fundamental cycles (decoupling between
different controllers is needed!).
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Three-layer decompositionThree-layer decomposition
• The previous requirements suggest a

decomposition of the control system in three
layers:
• reference tracking control (for a quick

dynamic response) ���� loop bandwidth;
• fundamental component control ���� high loop

gain at the fundamental frequency, with low
selectivity;
• harmonics control ���� high loop gain at each

harmonic frequency with high selectivity.

• The previous requirements suggest a
decomposition of the control system in three
layers:
• reference tracking control (for a quick

dynamic response) ���� loop bandwidth;
• fundamental component control ���� high loop

gain at the fundamental frequency, with low
selectivity;
• harmonics control ���� high loop gain at each

harmonic frequency with high selectivity.
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Three-Layer DecompositionThree-Layer Decomposition
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Bode diagram of open loop gainBode diagram of open loop gain

(a) only proportional gain(a) only proportional gain (b) PI control(b) PI control
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• In principle, harmonics could be controlled by
integral, rotating frame regulators.

• This solution is cumbersome, requiring a large
number of dq transformations.

• The AC equivalent of the integral controller is a
high selectivity band-pass filter. This is difficult
to implement because of fixed point arithmetic.

• Even if no stability problems can be generated,
the selectivity is strongly limited by rounding
errors affecting the filter coefficients.

• In principle, harmonics could be controlled by
integral, rotating frame regulators.

• This solution is cumbersome, requiring a large
number of dq transformations.

• The AC equivalent of the integral controller is a
high selectivity band-pass filter. This is difficult
to implement because of fixed point arithmetic.

• Even if no stability problems can be generated,
the selectivity is strongly limited by rounding
errors affecting the filter coefficients.

NotesNotes
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 Fh- pass-band filter with unity gain and zero phase at
harmonic h, with good selectivity
 Fh- pass-band filter with unity gain and zero phase at
harmonic h, with good selectivity
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The above approximation is well verified by
several types of band-pass filters. A good choice,
which offers significant implementation
advantages, is represented by FIR filters based on
DFT such as:

The above approximation is well verified by
several types of band-pass filters. A good choice,
which offers significant implementation
advantages, is represented by FIR filters based on
DFT such as:

For a single harmonic frequencyFor a single harmonic frequency

Harmonic controlHarmonic control
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Harmonic controlHarmonic control
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• This equation is based on the expression of
the h-th harmonic component of a given input
signal’s DFT to derive a filter (running DFT).

• The structure is that of a typical FIR filter
(linear combination of delays).

• From this standpoint N·Ts (Ts is the sampling
period) does not necessarily represent the
period of the input signal, which can be even
non-periodic.

• This equation is based on the expression of
the h-th harmonic component of a given input
signal’s DFT to derive a filter (running DFT).
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non-periodic.
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yh(k) is a sinusoidal signal that represents the
projection of the input signal x(k) upon the cosine
base function of order h.

yh(k) is a sinusoidal signal that represents the
projection of the input signal x(k) upon the cosine
base function of order h.

coefficients are not
time dependent!
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Harmonic controlHarmonic control
Comparison with DFT:Comparison with DFT:
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k is the time index, so in the DFT coefficients are
time dependent. The structure of the two algorithms
is exactly the same.
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Harmonic controlHarmonic control

Sampled
frequency
response, as
seen by signals
with period
N·Ts/h.

Sampled
frequency
response, as
seen by signals
with period
N·Ts/h.

Frequency response of function Fdh(z) for h = 3.Frequency response of function Fdh(z) for h = 3.
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Harmonic controlHarmonic control
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No additional calculations
for more harmonics
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Harmonic controlHarmonic control
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• The coefficient for the i-th term can be
computed off-line according to:

• The control complexity does not depend on
the number of harmonic components taken
into account.
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• The control complexity does not depend on
the number of harmonic components taken
into account.
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Design CriteriaDesign Criteria

Proportional terms and fundamental frequency
control are based on specified bandwidth and
phase margin:

Proportional terms and fundamental frequency
control are based on specified bandwidth and
phase margin:
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Fundamental frequency controlFundamental frequency control

KIc is the integral gain of a conventionally
designed PI regulator.
KIc is the integral gain of a conventionally
designed PI regulator.
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Harmonic controlHarmonic control

• Amplification of frequencies close to the
harmonics is an undesired effect of the filter
superposition.

• Introduction of the leading angle φφφφk is possible
by means of positive feedback, provided that
the angle is proportional to the harmonic
frequency.

• Internal delays can be compensated.

• Amplification of frequencies close to the
harmonics is an undesired effect of the filter
superposition.

• Introduction of the leading angle φφφφk is possible
by means of positive feedback, provided that
the angle is proportional to the harmonic
frequency.

• Internal delays can be compensated.
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Design CriteriaDesign Criteria

Specification 
on the response time (npk )
Specification 
on the response time (npk ) Spk

Ik Tn
2.2K ====

Harmonic controlHarmonic control

npk is the desired number of fundamental cycles
for the dynamic response. It must be high enough
to provide de-coupling with the fundamental
frequency control. The equation is derived by
approximated relations between gain and settling
time of 2nd order band-pass filters.

npk is the desired number of fundamental cycles
for the dynamic response. It must be high enough
to provide de-coupling with the fundamental
frequency control. The equation is derived by
approximated relations between gain and settling
time of 2nd order band-pass filters.
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Design CriteriaDesign Criteria
Harmonic controlHarmonic control

 gain of DFT filters gain of DFT filters
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This relation is based on the approximation of the
single DFT filter with a conventional second order
band-pass filter.
By trial and errors the 0.32 coefficient can be
determined as the one minimizing the “distance”
between the two frequency responses.
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Closed-loop Output ImpedanceClosed-loop Output Impedance
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(c) integral rotating-frame regulators(c) integral rotating-frame regulators
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DSP ImplementationDSP Implementation

Main features of DSP-based controller ADMC401:
• 16-bit fixed point DSP based on ADSP 2171 core.
• Fast arithmetic unit (38.5ns cycle).
• High-performance peripherals (double-update

PWM modulators, flash A/D 12 bit converters,
etc..).

• Suited for single-chip high-performance motion
control applications.

Main features of DSP-based controller ADMC401:
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• Fast arithmetic unit (38.5ns cycle).
• High-performance peripherals (double-update
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• Suited for single-chip high-performance motion
control applications.
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Control Program 
Flow-Chart

Control Program 
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• Implementation on
ADMC401

• The control program
is written in assembly
language.

• The use of DFT based
filters greatly
simplifies the
implementation.

• Execution times are
short.

• Implementation on
ADMC401

• The control program
is written in assembly
language.

• The use of DFT based
filters greatly
simplifies the
implementation.

• Execution times are
short.
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.MODULE/RAM/SEG=USER_PM1 DFT_FILTER200;

.CONST ORD_N=200;

.VAR/RAM/PM/CIRC Filt_Coef[ORD_N];

#include "dft.dat” /* coefficients
    initialization   */

.ENTRY DFT200;

DFT200:
i5=^Filt_Coef; /* use dedicated  */
l5=%Filt_Coef; /* circular registers */
m5=1; /* i,l,m (0-7) */
l0=%Filt_Coef; /* i0 data pointer (same lenght) */

.MODULE/RAM/SEG=USER_PM1 DFT_FILTER200;

.CONST ORD_N=200;

.VAR/RAM/PM/CIRC Filt_Coef[ORD_N];

#include "dft.dat” /* coefficients
    initialization   */

.ENTRY DFT200;

DFT200:
i5=^Filt_Coef; /* use dedicated  */
l5=%Filt_Coef; /* circular registers */
m5=1; /* i,l,m (0-7) */
l0=%Filt_Coef; /* i0 data pointer (same lenght) */

DSP Implementation
Program sample

DSP Implementation
Program sample
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m1=1;
mr = 0, mx0 = dm(i0,m1), my0 = pm(i5,m5);

cntr=%Filt_coef-1;

do calc0 until ce;
calc0: mr = mr + mx0 * my0 (ss),

mx0 = dm(i0,m1), my0 = pm(i5,m5);
mr = mr + mx0 * my0 (rnd);

if mv sat mr;
rts;

.ENDMOD;

m1=1;
mr = 0, mx0 = dm(i0,m1), my0 = pm(i5,m5);

cntr=%Filt_coef-1;
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.ENDMOD;
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DSP Implementation
Program sample

DSP Implementation
Program sample

• The algorithm exploits the same data structures
(circular registers) used for DFT computation.

• The managing of these structures is different
with respect to the DFT case.

• The DSP is optmized to implement such an
algorithm in minimum time.

• Great accuracy and good performance can be
achieved with reduced computation time.

• The algorithm exploits the same data structures
(circular registers) used for DFT computation.

• The managing of these structures is different
with respect to the DFT case.

• The DSP is optmized to implement such an
algorithm in minimum time.

• Great accuracy and good performance can be
achieved with reduced computation time.
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Experimental SetupExperimental Setup

Prototype ratings:
• DC-link voltage 300V
• Filter Inductance 1 mH
• Output Filter Capacitor 120µµµµF 
• Switching frequency 10kHz
• Selected frequencies:        3rd, 5th,7th,9th,11th
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Experimental Results
Three-phase diode rectifiers - Proposed solution

Experimental Results
Three-phase diode rectifiers - Proposed solution

(a) Ouput Voltage (40V/div)(a) Ouput Voltage (40V/div)

time (5ms/div)time (5ms/div) frequency (50Hz/div)frequency (50Hz/div)

(a)

(b) Ouput current (10A/div)(b) Ouput current (10A/div)
c) Output voltage

spectrum (10dB/div)
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Experimental Results
Three-phase diode rectifiers - PI controller
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Experimental Results
Single-phase diode rectifier
Experimental Results
Single-phase diode rectifier
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Experimental Results
Distorting Load Turn-on

Experimental Results
Distorting Load Turn-on

time (10ms/div)time (10ms/div)

(a)(a)

(b)(b)(b)

(a) Ouput Voltage (40V/div)(a) Ouput Voltage (40V/div) (b) Ouput current (10A/div)(b) Ouput current (10A/div)



August 2001 Lesson 4 38

Experimental Results
Linear Load Step-Changes
Experimental Results
Linear Load Step-Changes
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