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Goal of the workGoal of the work

Investigation of digital predictive voltage and
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load changes, etc…);
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Presentation outlinePresentation outlinePresentation outline

• Control technique derivation:
• current loop
• voltage loop

• Design criteria and implementation
issues
• Simulation results
• Experimental results

•• Control technique derivation:Control technique derivation:
•• current loopcurrent loop
•• voltage loopvoltage loop

•• Design criteriaDesign criteria and implementation and implementation
issuesissues
•• SimulationSimulation results results
•• ExperimentalExperimental results results
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The control equation assumes that:The control equation assumes that:
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The model works properly
in the UPS case if the
sampling frequency is
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times) than the resonance
frequency of the output LC
filter.
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Review of deadbeat control
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Voltage control loopVoltage controlVoltage control loop loop

•• The The same same reasoning used for dead-beat currentreasoning used for dead-beat current
loop can be applied loop can be applied also to the voltage loop.also to the voltage loop.

•• A A key pointkey point is to make the  is to make the sampling periodsampling period of of
the the voltage controlvoltage control equal to  equal to TWICETWICE the the
sampling periodsampling period of the  of the current loop.current loop.

•• Thus, Thus, the current closed loop the current closed loop control can becontrol can be
modeled as a modeled as a simple delaysimple delay (i.e. a two sampling (i.e. a two sampling
period delay).period delay).
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Voltage control loopVoltage controlVoltage control loop loop
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Dead-Beat Voltage Control Equation (DBVCE)Dead-Beat Voltage Control Equation (DBVCE)
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Voltage control loopVoltage controlVoltage control loop loop
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Voltage control loop
Load current estimation

Voltage controlVoltage control loop loop
Load current estimationLoad current estimation

•• The load current The load current does not needdoes not need to be measured to be measured
•• The following The following dead-beatdead-beat (system poles in the (system poles in the

origin) origin) estimationestimation  is derived   is derived (DBEE):(DBEE):
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•• Estimation with Estimation with system poles away from thesystem poles away from the
originorigin implies a  implies a IIR low-pass filterIIR low-pass filter on the on the
estimated current (*)estimated current (*)

•• Practically,Practically, a moving average  a moving average (FIR) filter with 4(FIR) filter with 4
taps was usedtaps was used

(*)(*)(*)
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Voltage control loop
Control refinements

Voltage controlVoltage control loop loop
Control refinementsControl refinements

•• Feedforward of capacitor current referenceFeedforward of capacitor current reference
(obtained from output voltage reference).(obtained from output voltage reference).

•• Feedforward of the estimated load current.Feedforward of the estimated load current.
•• Interpolation between samplesInterpolation between samples

(reduction of oscillations on inverter voltage at half of the(reduction of oscillations on inverter voltage at half of the
sampling frequency).sampling frequency).

•• Detuning of voltage controlDetuning of voltage control
(voltage estimation at instant k+1 with system pole away(voltage estimation at instant k+1 with system pole away
from the origin from the origin (low-pass filtering action)(low-pass filtering action)  - lower- lower  sensitivitysensitivity  toto
noise).noise).
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Voltage control loop
Control refinements

Voltage controlVoltage control loop loop
Control refinementsControl refinements

FeedforwardFeedforward of the estimated  of the estimated load currentload current (DBEE) (DBEE)
allows the allows the voltage dynamic equationvoltage dynamic equation to re-written: to re-written:
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h is the index for 2Tsw
sampling period
h is the index for 2Tsw
sampling period
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Voltage control loop
Control refinements

Voltage controlVoltage control loop loop
Control refinementsControl refinements

FeedforwardFeedforward of also the capacitive current allows of also the capacitive current allows
DBVCEDBVCE to be re-written: to be re-written:
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Where Where ∆∆∆∆∆∆∆∆iicc** stands for the  stands for the deviation deviation of the of the iicc**

current from its current from its feed-forwarded value.feed-forwarded value.
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Voltage control loop
Control refinements

Voltage controlVoltage control loop loop
Control refinementsControl refinements

Linear interpolationLinear interpolation can be used to  can be used to re-constructre-construct
the the ”missing” current sample.”missing” current sample. This modifies This modifies
again the again the voltage dynamic equation:voltage dynamic equation:

and generates the followingand generates the following control equation: control equation:
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Voltage control loop
Control timing

Voltage controlVoltage control loop loop
Control timingControl timing
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Voltage control loop
Effects of Interpolation

Voltage controlVoltage control loop loop
Effects of InterpolationEffects of Interpolation
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Voltage control loop
De-tuning

Voltage controlVoltage control loop loop
De-De-tuningtuning

To improve theTo improve the controller’s robustness  controller’s robustness it isit is
possible topossible to de-tune  de-tune the voltage loop. This impliesthe voltage loop. This implies
thethe allocation  allocation of the controllerof the controller pole away  pole away from thefrom the
origin origin of the complex plane.of the complex plane.
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Voltage dynamic equation for the Voltage dynamic equation for the deviationsdeviations from from
the ideal the ideal trajectory.trajectory.
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Voltage control loop
De-tuning

Voltage controlVoltage control loop loop
De-De-tuningtuning

The The control lawcontrol law which ensures a  which ensures a dead-beat responsedead-beat response
is simply given by:is simply given by:

where where ∆∆∆∆∆∆∆∆vvoo  represents the represents the estimatedestimated output voltage output voltage
deviation (due to deviation (due to calculation delaycalculation delay we can’t use the we can’t use the
actual deviation).actual deviation).

^̂
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The The estimator estimator can have the classicalcan have the classical Luenberger Luenberger
structure. Kstructure. Kss  allows to select theallows to select the pole location. pole location.

Voltage control loop
De-tuning

Voltage controlVoltage control loop loop
De-De-tuningtuning

If the If the polepole is located in the  is located in the originorigin (dead-beat (dead-beat
estimator) we have the usual estimator) we have the usual DBVCE for theDBVCE for the
deviation.deviation. Otherwise we have a  Otherwise we have a de-tunedde-tuned controller controller
with a with a first order response.first order response.
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Control block diagramControl block diagramControl block diagram

Output filter capacitor and load modelOutput filter capacitor and load modelOutput filter capacitor and load model
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Deadbeat current controlDeadbeat current controlDeadbeat current control

Control block diagramControl block diagramControl block diagram
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Control block diagramControl block diagramControl block diagram
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iL
*

Current
control

Load current
estimator

+
- ZC(z)

iL

io

iC

vo

Zo(z)

io
++



August 2001 Lesson 2 27

Control block diagramControl block diagramControl block diagram
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Control block diagramControl block diagramControl block diagram

Deadbeat voltage controlDeadbeat voltage controlDeadbeat voltage control
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Control block diagramControl block diagramControl block diagram
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Control block diagramControl block diagramControl block diagram
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Control implementationControl implementationControl implementation

•• The control program is implemented by means ofThe control program is implemented by means of
a a floating point DSP:floating point DSP:

−− ADSP21062: 33 Mips, 30 ns instruction cycleADSP21062: 33 Mips, 30 ns instruction cycle

•• The power converter is controlled by a motionThe power converter is controlled by a motion
control oriented control oriented fixed point DSP:fixed point DSP:

−− ADMC401: 26 Mips, 38.5 ns instruction cycleADMC401: 26 Mips, 38.5 ns instruction cycle

•• The two units are interfaced by means of a The two units are interfaced by means of a dualdual
port RAMport RAM (1kword). A suitable  (1kword). A suitable communicationcommunication
protocolprotocol is implemented. is implemented.
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Control implementationControl implementationControl implementation
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Control implementationControl implementationControl implementation

•• The The control programcontrol program is written in  is written in C language,C language, and and
the AD the AD C-compilerC-compiler for the ADSP 21062 is used. for the ADSP 21062 is used.

•• Given the very high performance of the DSP unit,Given the very high performance of the DSP unit,
no no timing problemtiming problem is encountered, even for very is encountered, even for very
complex algorithmscomplex algorithms and 20 kHz operating and 20 kHz operating
frequency.frequency.

•• Data exchangeData exchange between the two units is dealt with between the two units is dealt with
by means of simple by means of simple data memory writedata memory write  (DM)(DM)
instructions.instructions.
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Experimental resultsExperimental resultsExperimental results

ooNominal output powerNominal output power PP 11 [kVA][kVA]

Nominal output voltageNominal output voltage VVoRMSoRMS 115115 [V][V]

Minimum load DFMinimum load DF coscos φφφφφφφφ 0.80.8
DC link voltageDC link voltage VVDCDC 250250 [V][V]

Output frequencyOutput frequency ff oo 5050 [Hz][Hz]
Output inductorOutput inductor LL 1.81.8 [mH][mH]
Output capacitorOutput capacitor CC 120120 [[µµµµµµµµF]F]
Switching frequencySwitching frequency ffss 1515 [kHz][kHz]

Experimental prototype’s parametersExperimental prototype’s parametersExperimental prototype’s parameters
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Experimental resultsExperimental resultsExperimental results
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Experimental resultsExperimental resultsExperimental results
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Experimental resultsExperimental resultsExperimental results
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Experimental resultsExperimental resultsExperimental results
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Experimental resultsExperimental resultsExperimental results
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PI control
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