Unified Analysis of Isolated Bidirectional Converters for Battery Charging

Simone Buso, Giorgio Spiazzi University of Padova - DEI

Outline

Introduction

- Review of Considered Converter Topologies
 - **Single-Phase Dual Active Bridge (DAB)**
 - Single-Phase Series Resonant DAB (SR-DAB)
 - □ Three-Phase Dual Active Bridge (DAB)
 - Three-Phase Series Resonant DAB (SR-DAB)
 - □ Interleaved Boost with Coupled Inductor (IBCI)
- Unified Analysis
- Soft-switching conditions
- Transferred Power Calculation

Introduction

Isolated Bidirectional Topologies

- topologies with reduced switch count
 - Flyback

 - □ Sepic
 - □....
- topologies with dual bridge (or half-bridge or push-pull) configuration
 - Dual Active Bridge (DAB)
 - □ Interleaved Boost with Coupled Inductors (IBCI)

□....

- topologies with dual bridge configuration and high frequency resonant networks
 - Series Resonant DAB (SR-DAB)
 - □....

S. Buso, G. Spiazzi - University of Padova - DEI

Reduced Switch Count Topologies

- High voltage and/or current stress on active components
- Limited soft-switching operation
- Transformer leakage inductance requires suitable snubber circuits

Example: bidirectional Cuk converter

Dual Active Bridge (DAB)

Single-phase:

- Simple phase-shift modulation
- Extended soft-switching operation
- Exploitation of transformer leakage inductance
- Optimum design for constant port voltages V₁ and V₂

S. Buso, G. Spiazzi - University of Padova - DEI

Dual Active Bridge (DAB)

Three-phase:

- Simple phase-shift modulation
- Extended soft-switching operation
- Exploitation of transformer leakage inductance
- Optimum design for constant port voltages V₁ and V₂
- Reduced input and output current ripples

S. Buso, G. Spiazzi - University of Padova - DEI

Series Resonant Dual Active Bridge (SR-DAB)

Single-phase:

- Same characteristics as single-phase DAB
- Higher degree of freedom (two parameters: L and C)
- Inherent protection against transformer saturation (with C split between primary and secondary)

Series Resonant Dual Active Bridge (SR-DAB)

Three-phase:

- Same characteristics as three-phase DAB
- Higher degree of freedom (two parameters: L and C)
- Inherent protection against transformer saturation (with C split between primary and secondary)

DIPARTIMENTO

Interleaved Boost with Coupled Inductors (IBCI)

- Simple phase-shift modulation
- Extended soft-switching operation
- Exploitation of mutual inductor leakage inductance
- Duty-cycle control of port 2 switches for variable port voltages V₁ and V₂
- Reduced port 2 current ripple (low-voltage high-current port)

S. Buso, G. Spiazzi - University of Padova - DEI

Unified Analysis

All the aforementioned topologies control the power transfer between the two ports by modulating the voltage applied to a current shaping impedance

For DAB and IBCI topologies, Z is a simple inductor while for SR-DAB topologies Z is a series resonant L-C tank

S. Buso, G. Spiazzi - University of Padova - DEI

Phase-Shift Modulation

Example: power transfer from v_A to v_B

DIPARTIMENTO DI INGEGNERIA

DELL'INFORMAZIONE

Phase-Shift Modulation

v_A and v_B are square wave voltages of amplitudes V_A and V_B, respectively

$$V_A = V_1$$
 $V_B = nV_2$

The power transfer between ports 1 and 2 is controlled through the phase-shift angle φ

$$0 \le \varphi \le \pi/2 \qquad v_A \stackrel{P}{\longrightarrow} v_B$$
$$-\pi/2 \le \varphi \le 0 \qquad v_A \stackrel{P}{\longleftarrow} v_B$$

Inductor current has a piecewise linear behavior (DAB)

S. Buso, G. Spiazzi - University of Padova - DEI

S. Buso, G. Spiazzi - University of Padova - DEI

14/66

DIPARTIMENTO

v_A is a three-level voltage of amplitude V_A while v_B is a square wave voltage of amplitude V_B

$$V_g D = (V_{CL} - V_g)(1 - D) \implies V_{CL} = \frac{V_g}{1 - D}$$

$$V_{A} = \frac{n_{s}}{n_{p}} V_{CL} = \frac{n_{s}}{n_{p}} \frac{V_{2}}{1 - D}$$
 $V_{B} = V_{B}$

- The duty-cycle of port 2 switches is controlled so as to obtain the condition V_A=V_B
- The power transfer between ports 1 and 2 is controlled through the phase-shift angle φ

$$0 \le \varphi \le \pi/2 \qquad v_{A} \stackrel{P}{\Longrightarrow} v_{B}$$
$$-\pi/2 \le \varphi \le 0 \qquad v_{A} \stackrel{P}{\longleftarrow} v_{B}$$

Inductor current has a piecewise linear behavior

DELL'INFORMAZIONE

\ /

Phase-Shift Modulation in Three-Phase Converters

DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

Phase-Shift Modulation in Three-Phase Converters

- v_A and v_B are six-step voltage waveforms
- The power transfer between ports 1 and 2 is controlled through the phase-shift angle φ

$$0 \le \varphi \le \pi/2$$
 $v_A \stackrel{P}{\Longrightarrow} v_B$

$$-\pi/2 \le \varphi \le 0$$
 $v_A \leftarrow v_B$

Two different situations (power from port 1 to port 2): $\Box 0 \le \varphi \le \pi/3$ $\Box \pi/3 \le \varphi \le \pi/2$

D

Inductor current has a piecewise linear behavior (DAB)

S. Buso, G. Spiazzi - University of Padova - DEI

Systematic Steady-State Analysis

- DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE
- The analytical determination of the current waveforms requires a systematic method for complex topologies (e.g. three-phase resonant DAB).
- The outcome is the mathematical expression of phase currents as a function of phase-shift and other design parameters.
- In addition, soft switching conditions can be analyzed in detail by extracting current values at the moment of switch commutations.

Systematic Steady-State Analysis

The half switching period is divided into m subintervals. For each subinterval ($i = 1 \div m$), the values of the current shaping impedance state variables x_i at the end of the interval are calculated, in normalized form, as a function of their value x_{i-1} at the beginning, i.e.:

$$\mathbf{x}_{\mathbf{i}} = \mathbf{M}_{\mathbf{i}}\mathbf{X}_{\mathbf{i}-1} + \mathbf{N}_{\mathbf{i}}\upsilon_{\mathbf{i}}$$

We can iterate, obtaining

W

$$\begin{aligned} \mathbf{x}_{m} &= \mathbf{M}_{m,1} \mathbf{x}_{0} + \left(\sum_{i=1}^{m-1} \mathbf{M}_{m,i+1} \mathbf{N}_{i} \upsilon_{i} \right) + \mathbf{N}_{m} \upsilon_{m} = \mathbf{M}_{m,1} \mathbf{x}_{0} + \mathbf{F} \\ \end{aligned}$$

here
$$\mathbf{M}_{j,i} &= \prod_{k=i}^{j} \mathbf{M}_{k} \quad j \ge i \end{aligned}$$

and v is a column vector containing $m v_i$ elements, i.e.

$$\mathbf{v} = \begin{bmatrix} v_1 & v_2 & \cdots & v_m \end{bmatrix}^T$$

S. Buso, G. Spiazzi - University of Padova - DEI

Exploiting the waveform symmetry, we can write:

$$\mathbf{x}_{\mathrm{m}} = \mathbf{M}_{\mathrm{m},1}\mathbf{x}_{\mathrm{0}} + \mathbf{F} = -\mathbf{x}_{\mathrm{0}}$$

from which the initial state variable values are found:

$$\mathbf{x}_0 = \left(-\mathbf{I} - \mathbf{M}_{m,1} \right)^{-1} \mathbf{F}$$

that can be used to derive the current waveform expressions and to discuss soft-switching conditions

26/66

DIPARTIMENTO

Example: IBCI

Base variables:

- Base voltage:
- Base impedance:
- Base current:
- Base power:

 $V_{N} = V_{A}$ $Z_{N} = \omega_{sw}L$ $I_{N} = V_{N}/Z_{N}$ $P_{N} = V_{N}^{2}/Z_{N}$

The half switching period is subdivided into 4 subintervals (m = 4).

Two situations has to be considered:

Case A: $0 < \phi < \pi(D-1/2)$

Case B: π (D-1/2) < ϕ < π /2

S. Buso, G. Spiazzi - University of Padova - DEI

Example: IBCI

Defining $j(\theta) = i(\theta)/I_N$ as the normalized inductor current:

$$J_i = J_{i-1} + \upsilon_i \delta_i$$
 for $i = 1, ..., m$

Comparing with: $\mathbf{x}_{i} = \mathbf{M}_{i}\mathbf{x}_{i-1} + \mathbf{N}_{i}\upsilon_{i}$

$$\begin{cases} M_i = 1 \\ N_i = \delta_i \end{cases} \text{ for } i = 1, \dots, m$$

S. Buso, G. Spiazzi - University of Padova - DEI

30/66

From: $\mathbf{x}_0 = (-\mathbf{I} - \mathbf{M}_{m,1})^{-1} \mathbf{F}$

the normalized initial inductor current value is:

$$J_0 = -\frac{1}{2}\sum_{i=1}^4 \upsilon_i \delta_i$$

For both cases A and B we have:

$$\mathbf{J}_0 = -\pi(\mathbf{1} - \mathbf{D}) + \mathbf{k} \left(\frac{\pi}{2} - \boldsymbol{\varphi}\right)$$

For plus phase-shift modulation $\mathbf{k} = \mathbf{1}$:

$$J_0 = \pi \left(D - \frac{1}{2} \right) - \phi$$

S. Buso, G. Spiazzi - University of Padova - DEI

Base variables:

- Base voltage:
- Base impedance:
- Base current:
- Base power:
- Base frequency:

 $\omega_{N} = \omega_{r}$

$$\mathbf{P}_{\mathrm{N}} = \mathbf{V}_{\mathrm{N}}^{2} / \mathbf{Z}_{\mathrm{N}}$$

$$\omega_r = \frac{1}{\sqrt{LC}}$$

 $Z_r = \sqrt{\frac{L}{C}}$

S. Buso, G. Spiazzi - University of Padova - DEI

Current shaping impedance state variables:

$$\begin{cases} j_{L}(\theta) = \upsilon \sin\left(\frac{\theta}{f_{n}}\right) - U_{C0} \sin\left(\frac{\theta}{f_{n}}\right) + J_{L0} \cos\left(\frac{\theta}{f_{n}}\right) \\ u_{C}(\theta) = \upsilon\left(1 - \cos\left(\frac{\theta}{f_{n}}\right)\right) + U_{C0} \cos\left(\frac{\theta}{f_{n}}\right) + J_{L0} \sin\left(\frac{\theta}{f_{n}}\right) \end{cases}$$

Normalized state variable vector: $\mathbf{x} = \begin{bmatrix} \mathbf{j}_{L} \\ \mathbf{u}_{C} \end{bmatrix}$

S. Buso, G. Spiazzi - University of Padova - DEI

The half switching period is subdivided into 2 subintervals (m = 2).

i =	= 1	i = 2				
υ	δ	υ	δ			
1+k	φ	1 - k	$\pi - \phi$			

Current shaping impedance state variables:

S. Buso, G. Spiazzi - University of Padova - DEI

Matrix F:

$$\mathbf{F} = \begin{pmatrix} \sin\left(\frac{\pi}{f_{n}}\right) \\ 1 - \cos\left(\frac{\pi}{f_{n}}\right) \end{pmatrix} + \begin{pmatrix} \sin\left(\frac{\pi}{f_{n}}\right) - 2\sin\left(\frac{\pi-\phi}{f_{n}}\right) \\ 2\cos\left(\frac{\pi-\phi}{f_{n}}\right) - \cos\left(\frac{\pi}{f_{n}}\right) - 1 \end{pmatrix} \mathbf{k}$$

Initial conditions:

$$\mathbf{x}_{0} = \begin{pmatrix} -1 - \cos\left(\frac{\pi}{f_{n}}\right) & \sin\left(\frac{\pi}{f_{n}}\right) \\ -\sin\left(\frac{\pi}{f_{n}}\right) & -1 - \cos\left(\frac{\pi}{f_{n}}\right) \end{pmatrix}^{-1} \mathbf{F}$$

S. Buso, G. Spiazzi - University of Padova - DEI

Initial conditions:

$$\mathbf{x}_{0} = \frac{1}{1 + \cos\left(\frac{\pi}{f_{n}}\right)} \left[\left(-\sin\left(\frac{\pi}{f_{n}}\right)\right) + \left(\frac{\sin\left(\frac{\pi-\phi}{f_{n}}\right) - \sin\left(\frac{\phi}{f_{n}}\right)}{1 + \cos\left(\frac{\pi}{f_{n}}\right) - \cos\left(\frac{\pi-\phi}{f_{n}}\right) - \cos\left(\frac{\phi}{f_{n}}\right)} \right] \right]$$

$$J_{L0}(\phi) = \frac{-\sin\left(\frac{\pi}{f_{n}}\right) + k\left[\sin\left(\frac{\pi-\phi}{f_{n}}\right) - \sin\left(\frac{\phi}{f_{n}}\right)\right]}{1 + \cos\left(\frac{\pi}{f_{n}}\right)}$$
S. Buso, G. Spiazzi - University of Padova - DEI 36/66

Example: Three-Phase DAB

The half switching period is subdivided into 6 subintervals (m = 6).

Two situations has to be considered:

Case A: $0 < \phi < \pi/3$

S. Buso, G. Spiazzi - University of Padova - DEI

Example: Three-Phase DAB and SR-DAB

The half switching period is subdivided into 6 subintervals (m = 6).

Two situations has to be considered:

Case B: $\pi/3 < \phi < \pi/2$

S. Buso, G. Spiazzi - University of Padova - DEI

38/66

DIPARTIMENTO

ΠΕΙ Ι 'ΙΝΕΠRΜΔΖΙΠΝΕ

Example: Three-Phase DAB and SR-DAB

i=	1		2		3		4		5		6	
	υ	δ	υ	δ	υ	δ	υ	δ	υ	δ	υ	δ
А	$\frac{1+k}{3}$	φ	$\frac{1-k}{3}$	$\frac{\pi}{3}-\varphi$	$\frac{2-k}{3}$	φ	$\frac{2(1-k)}{3}$	$\frac{\pi}{3}-\varphi$	$\frac{1-2k}{3}$	φ	$\frac{1-k}{3}$	$\frac{\pi}{3}-\varphi$
В	$\frac{1+2k}{3}$	$\varphi - \frac{\pi}{3}$	$\frac{1+k}{3}$	$\frac{2\pi}{3}-\varphi$	$\frac{2+k}{3}$	$\varphi - \frac{\pi}{3}$	$\frac{2-k}{3}$	$\frac{2\pi}{3}-\varphi$	$\frac{1-k}{3}$	$\varphi - \frac{\pi}{3}$	$\frac{1-2k}{3}$	$\frac{2\pi}{3}-\varphi$

Soft-switching conditions DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE Single phase DAB: port 1 v_A --- V_A o----It S_{1aH} o── S_{1bH} $2\pi f_{sw}t$ -V_A..... 2π φ VB $-V_{R}$ S^olt S^{o---} $2\pi f_{sw}t$ $-V_B$ π 2π **Power flow** $i_{L}(\pi) = -i_{L}(0)$ $\mathbf{1}_{\mathrm{L}}$ $j_{L}(0) = -\phi \cdot k - \frac{\pi}{2}(1-k) \le 0$ $i_L(\phi)$ π $2\pi f_{sw}t$ 2π $\phi \geq \frac{\pi}{2}$ $i_{L}(0)$

S. Buso, G. Spiazzi - University of Padova - DEI

Soft-switching conditions DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE Single phase DAB: port 2 v_A ---- V_A o—∣⊧ S_{2bH} o−− S_{2aH} $2\pi f_{sw}t$ -V_A..... 2π -III-Ls φ VB $-V_{R}$ n:1 S_{2bl} $2\pi f_{sw}t$ $-V_B$ π 2π **Power flow** $i_{L}(\pi) = -i_{L}(0)$ $\mathbf{1}_{\mathrm{L}}$ $\mathbf{j}_{\mathsf{L}}(\boldsymbol{\varphi}) = \boldsymbol{\varphi} - \frac{\pi}{2}(1 - \mathbf{k}) \ge 0$ $i_L(\phi)$ π $2\pi f_{sw}t$ 2π $\varphi \geq \frac{\pi}{2}(1-k)$ $i_{L}(0)$ 41/66 S. Buso, G. Spiazzi - University of Padova - DEI

Single phase DAB

Port 1:

$$\varphi \ge \frac{\pi}{2}(1-k)$$

Port 2:

For a power flow from port 1 to port 2 the phase-shift interval is $0 \le \varphi \le \pi/2$. Thus, if $\mathbf{k} \ge \mathbf{1}$ the soft switching condition is satisfied for any φ value and for both bridge switches.

The same consideration holds for a power flow from port 2 to port 1 where voltages v_A and v_B are swept and k' = 1/k. Now, if $k' \ge 1$ ($k \le 1$) the soft switching condition is satisfied for any φ value.

S. Buso, G. Spiazzi - University of Padova - DEI

For a bidirectional power flow, if $\mathbf{k} = \mathbf{1}$ the soft switching condition is satisfied for any φ value between $-\pi/2$ and $\pi/2$.

S. Buso, G. Spiazzi - University of Padova - DEI

Single phase SR-DAB converter: port 2

S. Buso, G. Spiazzi - University of Padova - DEI

45/66

Single phase SR-DAB converter

Interleaved Boost with Coupled Inductors

Let's analyze the port 1 switch commutations first

S. Buso, G. Spiazzi - University of Padova - DEI

Case A:
$$0 < \phi < \pi(D-1/2)$$
 $k \ge 2(1-D)$

Case B: π (D-1/2) < ϕ < π /2

 $k \ge 1 - \frac{2}{\pi} \varphi$

Case B is included in case A! Same condition holds for reversed power flow

k = 1 is used to minimize the inductor current crest factor

S. Buso, G. Spiazzi - University of Padova - DEI

Interleaved Boost with Coupled Inductors

For port 2 switch commutations we have to analyze the currents i_a and i_b which depend also on duty-cycle:

DIPARTIMENTO DI INGEGNERIA Dell'Informazione

56/66

Considerations:

- The active clamp operation requires the clamp current to have zero average value. This means that the upper switch current must reverse polarity during their conduction interval (help soft-switching)
- A non negligible magnetizing inductor ripple helps to satisfy the soft-switching conditions especially at low power levels

S. Buso, G. Spiazzi - University of Padova - DEI

Single-phase DAB NORMALIZED TRANSFERRED POWER 1 0.8 V_B 0.6 $\Pi(\phi)$ 0.4 **Power flow** 0.2 $\Pi(\varphi) = \mathsf{k}\varphi\left(1 - \frac{\varphi}{\pi}\right)$ 0 0.25 0.75 0.5 0 $k = \frac{V_B}{V_A}$ Π NORMALIZED PHASE-SHIFT ANGLE 58/66 S. Buso, G. Spiazzi - University of Padova - DEI

Single-phase DAB

NORMALIZED TRANSFERRED POWER

NORMALIZED PHASE-SHIFT ANGLE

S. Buso, G. Spiazzi - University of Padova - DEI

Single-phase SR-DAB

Power flow

NORMALIZED TRANSFERRED POWER

S. Buso, G. 9piazzi - University of Padova - DEI

NORMALIZED TRANSFERRED POWER

Single-phase SR-DAB

DI INGEGNERIA Dell'Informazione

DIPARTIMENTO

NORMALIZED TRANSFERRED POWER

S. Buso, G. Spiazzi - University of Padova - DEI

64/66

DIPARTIMENTO DI INGEGNERIA

DELL'INFORMAZIONE

Three-phase SR-DAB

S. Buso, G. Spiazzi - University of Padova - DEI

- Different isolated bidirectional topologies, belonging to the family of dual active bridge structures, have been considered
- A unified analysis has been carried out to calculate the steady-state current waveform responsible for the power transfer
- Soft-switching conditions have been investigated for each converter topology
- The transferred power and its relation with the phaseshift angle has been calculated

