# High Step-up Ratio DC-DC Converter Topologies

Part II

Speaker: G. Spiazzi

P. Tenti, L. Rossetto, G. Spiazzi, S. Buso, P. Mattavelli, L. Corradini Dept. of Information Engineering - DEI University of Padova

#### Seminar Outline

- Why we need high step-up ratio converters?
  - Application fields
- Low power high step-up ratio topologies
  - Coupled inductors
- High power high step-up ratio topologies
  - Non isolated
  - Isolated

#### Cascaded Boost Converter



Voltage conversion ratio: 
$$M = \frac{U_o}{U_g} = \frac{U_o}{U_1} \frac{U_1}{U_g} = \frac{1}{1 - d_1} \frac{1}{1 - d_2}$$

- 1 Reduced S<sub>1</sub> and D<sub>1</sub> voltage stress
- 1 High flexibility
- 1 Suitable for high power applications through interleaving connections
- ↓ Total power processed twice
- $\downarrow$  High  $S_2$  and  $D_2$  voltage stress

# Boost with Voltage Multiplier Cells



Voltage conversion ratio:

$$M = \frac{U_o}{U_g} \approx \frac{2}{1 - d}$$

- Voltage multiplier cell
- $\uparrow$  Reduced switch and diode voltage stress ( $U_{DS} \approx U_o/2$ )
- $\uparrow$  ZCS and soft diode turn off through the use of a resonant inductor  $L_{\rm r}$
- 1 Suitable for high power applications through interleaving connections
- Maximum and minimum duty-cycle limitation to guarantee
   soft commutations
- ↓ High switch RMS current
- Voltage stress reduction related to the number of cells

## Boost with Voltage Multiplier Cells



Voltage conversion ratio:

$$M = \frac{U_o}{U_g} \approx \frac{M+1}{1-d}$$

Switch voltage stress:

$$U_{DS} \approx \frac{U_o}{M+1}$$



$$T_{01} = t_1 - t_0$$





$$T_{12} = t_2 - t_1$$





Soft D<sub>m1</sub> turn off

$$T_{23} = t_3 - t_2$$





Soft D<sub>m2</sub> turn off

$$T_{45} = t_5 - t_4$$





Voltage conversion ratio:

$$M = \frac{U_o}{U_g} = \frac{1+d}{1-d}$$

Output voltage of each converter:

$$M_1 = \frac{U_1}{U_g} = M_2 = \frac{U_2}{U_g} = \frac{1}{1 - d}$$

- 1 Reduced switch and diode voltage stresses
- 1 Inductor L<sub>1</sub> and L<sub>2</sub> rated roughly at half of total input current
- 1 Suitable for high power applications through interleaving connections of each module
- Need for isolated gate driver
- ↓ Floating load connection
- ↓ Limited switch voltage stress reduction
- ↓ Penalty in the converter efficiency (negligible for high conversion ratios)





#### Power processed by each module:

$$P_1 = U_1 I_0 = P_2 = U_2 I_0 = P$$

#### Efficiency of each module:

$$\eta_1 = \frac{P_1}{P_g} = \frac{P_1}{P_1 + P_d}$$

#### Efficiency reduction:

$$\eta_{T} = \frac{P_{o}}{P_{g}} = \frac{P_{o}}{P_{o} + 2P_{d}} = \frac{(U_{1} + U_{2} - U_{g})I_{o}}{(U_{1} + U_{2} - U_{g})I_{o} + 2P_{d}} = \frac{2P - U_{g}I_{o}}{2(P + P_{d}) - U_{g}I_{o}}$$

$$\eta_{T} = \frac{1 - \frac{1}{2M_{1}}}{\frac{1}{\eta_{1}} - \frac{1}{2M_{1}}} = \frac{2M_{1} - 1}{\frac{2M_{1}}{\eta_{1}} - 1} = \frac{M}{\frac{M+1}{\eta_{1}} - 1} = \frac{\eta_{1}M}{M+1 - \eta_{1}}$$

**Efficiency reduction:** 
$$\eta_T = \frac{\eta_1 M}{M + 1 - \eta_1}$$



#### Interleaved Boost with Voltage Multiplier



$$U_1 = U_2 = \frac{U_0}{2}$$

Voltage conversion ratio d > 0.5:

$$M = \frac{U_o}{U_g} = \frac{2}{1-d}$$

- 1 Reduced switch and diode voltage stress (U<sub>o</sub>/2)
- 1 Inductor L<sub>1</sub> and L<sub>2</sub> rated at half of total input current
- 1 Reduced input current ripple due to interleaved operation
- ↓ Voltage multiplier cell operation requires d > d<sub>min</sub>
- ↓ More ringing on switch voltage due to capacitor ESL

### Current Waveforms d > 0.5



#### Interleaved Boost with Voltage Multiplier



#### Interleaved Boost with Voltage Multiplier



### Boost with Voltage Doubler



$$M = \frac{U_o}{U_g} = \frac{2}{1-d}$$

Similar behavior as the interleaved boost with voltage multiplier

Problem: for d < 0.5 the switch voltage stress  $(S_1)$  becomes the output voltage

### Extension to Higher Step-up Ratios



Voltage conversion ratio 
$$d > 2/3$$
:  $M = \frac{U_o}{U_g} = \frac{3}{1-d}$ 

### Boost with Voltage Doubler

Interleaved boost with voltage multiplier versus Boost with voltage doubler





Similar behavior for duty-cycle higher than 50% but the structure becomes asymmetric

#### Boost with Three-state Switching Cell



# Voltage conversion ratio (d > 0.5):

$$M = \frac{U_o}{U_g} = \left(\frac{n+1}{n}\right) \frac{1}{1-d}$$

$$n = \frac{N_p}{N_s}$$

- 1 Reduced switch and diode voltage stress (depending on n)
- 1 Reduced input current ripple due to interleaved operation
- ↓ Voltage multiplier cell operation requires d > d<sub>min</sub>
- $\downarrow$  Correct operation requires  $L_{\mu} > L_{\mu min}$
- ↓ Operation modes with very low gain

#### Boost with Three-state Switching Cell



# Interleaved Boost with Coupled Inductors and Voltage Multiplier



# Voltage conversion ratio d > d<sub>min</sub> (CCM):

$$M = \frac{U_o}{U_g} \approx \left(\frac{n+2}{n}\right) \frac{1}{1-d}$$

$$n = \frac{N_p}{N_s} \qquad \frac{L_m}{L_m + L_d} \approx 1$$

# Normalized switch voltage stress:

$$U_{swN} = \frac{U_{sw}}{U_o} = \frac{U_3}{U_o} \approx \frac{n}{n+2}$$

# Interleaved Boost with Coupled Inductors and Voltage Multiplier



# Voltage conversion ratio $d > d_{min}$ (CCM):

$$M = \frac{U_o}{U_g} \approx \left(\frac{n+2}{n}\right) \frac{1}{1-d}$$

$$n = \frac{N_p}{N_s} \qquad \frac{L_m}{L_m + L_d} \approx 1$$

- 1 Reduced switch and diode voltage stress (depending on n)
- 1 Reduced input current ripple due to interleaved operation
- 1 No reverse recovery losses (ZCS turn on)
- ↓ Voltage multiplier cell operation requires d > d<sub>min</sub>
- ↓ High switch current stress



















# Voltage conversion ratio d < d<sub>min</sub> (CCM):

$$M = \frac{U_o}{U_g} \approx \frac{1}{1 - 2d}$$

$$n = \frac{N_p}{N_s} \qquad \frac{L_m}{L_m + L_d} \approx 1$$

- The multiplier cell is disabled (u₁ = u₂ ≈ 0, U₃ ≈ U₀)
- The switch voltage stress becomes equal to the output voltage
- The magnetizing currents are in phase

### Voltage Conversion Ratio (CCM)



$$\frac{1}{1-2d_{\min}} = \frac{n+2}{2} \frac{1}{1-d_{\min}}$$



$$d_{min} = \frac{2}{n+4}$$

### Minimum Switch Voltage Stress

stress for  $d = d_{min}$ :

Normalized switch voltage 
$$U_{sw1N} = \frac{U_{sw}}{U_o} \approx \left(\frac{1}{1-2d_{min}}\right) \frac{1}{M}$$
 stress for d =  $d_{min}$ : 
$$= \frac{n+4}{nM}$$

Normalized switch voltage stress at nominal conditions (d > d<sub>min</sub>):

$$U_{sw2N} = \frac{U_{sw}}{U_o} \approx \frac{n}{2+n}$$

Optimum turns ratio:

$$U_{sw1N} = U_{sw2N}$$



$$n_{opt} = \frac{3}{M-1} \left( 1 + \sqrt{1 + \frac{8}{9}(M-1)} \right)$$

# Minimum Switch Voltage Stress



#### Isolated Interleaved High Gain Converter

#### Active clamp



- 1 Reduced switch and diode voltage stress
- 1 Reduced input current ripple due to interleaved operation
- 1 No reverse recovery losses (ZVS-ZCS switch turn on)
- 1 Same operation mode independent of duty-cycle value
- ↓ High switch and winding current RMS value









 $\pm D_2$ 

S4 ZV & ZC turn on



$$T_{45} = t_5 - t_4$$

 $S_2$  ZV & ZC turn on (i<sub>2</sub> is negative when  $S_4$  turns off)



$$T_{56} = t_6 - t_5$$



$$T_{01} = t_1 - t_2$$

## Mismatch Sensitivity

- In case of parameter and/or duty-cycle mismatch between the interleaved boost sections severe current mismatch occurs.
- The solution is to employ individual clamp capacitors for each subsection (in this case, the mismatch is absorbed by a small difference between the clamp capacitor voltages)



# Isolated Interleaved High Gain Resonant Converter



- □ Different operation mode is achieved by reducing the capacitor value of the voltage multiplier cell
- $\square$  Half-cycle resonances occur between capacitor  $C_1$  and  $C_2$  and transformer leakage inductances  $L_d$ .



|                      | <b>S</b> <sub>1</sub> | <b>S</b> <sub>2</sub> | $D_1$ | D <sub>2</sub> |
|----------------------|-----------------------|-----------------------|-------|----------------|
| $T_{01} = t_1 - t_0$ | on                    | on                    | off   | off            |
| $T_{12} = t_2 - t_1$ | off                   | on                    | on    | off            |
| $T_{23} = t_3 - t_2$ | off                   | on                    | off   | off            |
| $T_{34} = t_4 - t_3$ | on                    | on                    | off   | off            |
| $T_{45} = t_5 - t_4$ | on                    | off                   | off   | on             |
| $T_{56} = t_6 - t_5$ | on                    | off                   | off   | off            |

# Preliminary Experimental Results

$$U_g = 35V$$
,  $U_o = 360V$ ,  $P_o = 2500W$ ,  $f_{sw} = 40kHz$ 



High voltage ripple on clamp capacitors

Current waveform is half way between non resonant and resonant behaviors

#### Conclusions

- For high power applications, high step-up converters working with a quite high input current value should have a continuous input current absorption.
- Interleaved operation at input side helps to reduce the input current ripple as well as to share the total input current between different conversion subsections.
- A voltage multiplier at the output side avoids the use of dissipative snubbers across the output diodes.
- Isolated structures operate in the same manner independent of the duty-cycle value (they are better than the non-isolated ones)