High Step-up Ratio DC-DC Converter Topologies

Part I

Speaker: G. Spiazzi

P. Tenti, L. Rossetto, G. Spiazzi, S. Buso, P. Mattavelli, L. Corradini Dept. of Information Engineering - DEI University of Padova

Seminar Outline

- Why we need high step-up ratio converters?
 - Application fields
- Low power high step-up ratio topologies
 - Coupled inductors
- High power high step-up ratio topologies
 - Non isolated
 - Isolated

High Step-up Ratio Topologies

Why?

- · Low-voltage high-current energy sources
 - Fuel-cells (some kW)
 - Paralleled photovoltaic modules in domestic applications (some kW)
 - Microinverter, i.e. connection of a single photovoltaic module to the grid (some hundred watts)
- Step-down inverters require an input voltage higher than the maximum line voltage peak

Example of Microinverter

Microinverter structure

- Modularity
- Reduction of partial shading effects
- Dedicated Maximum Power Point Tracker (MPPT)

Simple Boost Topology

Boost scheme including some parasitic elements:

Voltage conversion ratio (neglecting inductor current ripple):

$$M = \frac{1}{1 - d} \frac{1}{1 + \frac{r_D(1 - d) + r_S d + r_L}{R_o(1 - d)^2}} = \frac{1}{1 - d} \cdot F(d, U_o, R_o)$$

Simple Boost Topology

Voltage conversion ratio M including conduction losses:

Simple Boost Topology

Converter efficiency:

$$\eta = \frac{P_{out}}{P_{in}} = \frac{U_o I_o}{U_i I_i} = \frac{U_o I_D}{U_i I_L} = M(1 - d) = F(d, U_o, R_o)$$

Low Power Applications

Example: integrated Boost-Flyback converter

It can be seen as a flyback converter with a non dissipative snubber: D₁ and C₁ deliver to the output the energy stored in the transformer leakage inductance L_d

Integrated Boost-Flyback Converter

Ideal waveforms:

- CCM operation of flyback section

- DCM operation of boost section

Advantages:

ZCS turn on Soft diode turn off Reduced switch voltage stress

Integrated Boost-Flyback Converter

Problems:

Parasitic oscillations at D_2 turn off caused by its capacitance C_r resonating with transformer leakage inductances L_d and L_s

High voltage stress across D₂

Dissipative R-C-D snubber is needed

Clamping diode D₃ added to the original topology

Advantages:

- Clean diode voltage waveforms without parasitic oscillations
- Energy transfer toward the output also during switch turn on interval
- Slight voltage gain increase due to resonances between parasitic components

Interval $T_{01} = t_1 - t_0$

Interval $T_{12} = t_2 - t_1$

Interval $T_{23} = t_3 - t_2$

Note: actual i_{D3} slope can be either positive or negative

Interval $T_{34} = t_4 - t_3$

Interval $T_{45} = t_5 - t_4$

Interval $T_{56} = t_6 - t_5$

Interval $T_{67} = t_7 - t_6$

Converter Parameters

$$U_q = 25-35 \text{ V}$$

$$P_0 = 300 \text{ W}$$

$$f_s = 100 \text{ kHz}$$

$$L_m = 20 \mu H$$

$$L_{d} = 0.4 \, \mu H$$

$$L_s = 2 \mu H$$

Voltage Conversion Ratio

Comparison between calculations and spice simulations

$$M = \frac{U_o}{U_g} \qquad M_1 = \frac{U_1}{U_g}$$

This unmatched point corresponds to a different topological sequence

Voltage Conversion Ratio

Effect of resonant intervals on the overall voltage gain

$$M = \frac{U_o}{U_g}$$

Experimental Results

$$U_g = 35 \text{ V}, U_o = 400 \text{ V}, P_o = 300 \text{ W}$$

Peaking due to a small dip in the converter input voltage due to fast current rise time

Experimental Results

Experimental Results

$$U_g = 25 \text{ V}, U_o = 400 \text{ V}, P_o = 300 \text{ W}$$

Measured Efficiency

Measured Efficiency

$$f_s = 100 \text{ kHz}$$

IBF Converter with Voltage Multiplier

Voltage multiplier cell

IBF Converter with Voltage Multiplier

IBF converter with voltage multiplier cell versus modified IBF

Similar behavior with a higher degree of freedom in controlling the switch voltage stress

Converter Waveforms

BOOST section in DCM and FLYBACK section in CCM

Experimental Prototype

Design example:

Input voltage: ———

 $U_a = 25 \div 35 \text{V}$

Output voltage:

 $U_0 = 400V$

Nominal output power:

 $P_{o} = 300W$

Switching frequency:

 $f_s = 100kHz$

Boost output: →150V rated mosfet

U₁ = 75V

Magnetizing inductance:

 $L_m = 20 \mu H$

Primary leakage inductance:

 $L_{d} = 0.4 \mu H$

Secondary leakage

inductance:

 $L_s = 2\mu H$

Based on desired current ripple and DCM-

CCM mode at nominal power

From the design constraints:

 $M = U_o / U_g = 400/35 = 11.42$ $M_1 = U_1 / U_a = 75/35 = 2.143$

Numerically solving:

d = 0.519, $n_{21} = 4.589$

 $M_2 = U_2 / U_0 = 4.823$

 $M_3 = M - M_1 - M_2 = U_3 / U_q = 4.454$

Experimental results

Converter efficiency

The converter efficiency was measured as a function of input voltage, at P_o =300W,Fig.1, and at U_g =[25V,35V] and variable output power, Fig. 2

Isolated IBF Converter

For isolation, the lossless snubber D_1 - C_1 is substituted by an active clamp

Isolated IBF Converter

Advantages:

- ZVS turn on
- Soft diode turn off
- Reduces switch voltage stress
- Clean diode voltage waveforms without parasitic oscillations
- Energy transfer toward the output also during switch turn on interval
- Reduced active clamp circulating current

Converter Operation

Hp: negligible capacitor voltage ripples

Converter Operation

Hp: negligible capacitor voltage ripples

Hp: negligible capacitor voltage ripples

Note: actual i_{D1} slope can be either positive or negative

Hp: negligible capacitor voltage ripples

Hp: negligible capacitor voltage ripples

Hp: negligible capacitor voltage ripples

Interval $T_{56} = t_6 - t_5$

Converter Parameters

• Input voltage: $U_g = 25-35 \text{ V}$

• Output voltage: $U_o = 400 \text{ V}$

• Nominal output power: $P_o = 300 \text{ W}$

• Switching frequency: $f_s = 100 \text{ kHz}$

• Magnetizing inductance: $L_m = 20 \mu H$

• Primary leakage inductance: $L_d = 0.4 \mu H$

• Secondary leakage inductance: $L_s = 2 \mu H$

Experimental Results

$$U_q = 35 \text{ V}, U_o = 400 \text{ V}, P_o = 300 \text{ W} (2\mu\text{s/div})$$

Peaking due to a small dip in the converter input voltage due to the fast current rise time

Experimental Results

 $U_g = 35 \text{ V}, U_o = 400 \text{ V}, P_o = 300 \text{ W} (2\mu\text{s/div})$

Experimental Results

 $U_g = 35 \text{ V}, U_o = 400 \text{ V}, P_o = 300 \text{ W} (2\mu\text{s/div})$

390 pF external capacitor added

The resonant phase reduces the active clamp circulating current

Detail of Main Switch Turn On

$$U_g = 35 \text{ V}, U_o = 400 \text{ V},$$

 $P_o = 300 \text{ W}$

Time scale: 500ns/div

Detail of Main Switch Turn Off

$$U_g = 35 \text{ V}, U_o = 400 \text{ V},$$

 $P_o = 300 \text{ W}$

Time scale: 500ns/div

Zero Voltage Switching

Detail of the main switch turn on (nominal output power)

Different Operating Mode

$$U_g = 25 \text{ V}, U_o = 400 \text{ V}, P_o = 100 \text{ W}$$

Measured Efficiency

Power stage only

Comments

- There are different topologies presented in literature whose behavior is very similar to the Integrated Boost-Flyback converter.
- These topologies have a drawback of a discontinuous input current waveform, that make the use of such converters for higher power levels at least problematic.
- For high power applications, a continuous input current represents a very nice feature