
1

Giorgio Spiazzi - University of Padova - Italy

Fundamental Definitions

• The capability of electrical and electronic
systems, equipment, and devices to operate
in their intended electromagnetic environment
within a defined margin of safety, and at
design levels of performance, without
suffering or causing unacceptable
degradation as a result of electromagnetic
interference

Electromagnetic Compatibility
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Fundamental Definitions

• EMI is the process by which disruptive
electromagnetic energy is transmitted from
one elctronic device to another via radiated
and/or conducted paths. In common usage,
EMI refers particularly to RF signals, but it can
occur in any frequency range starting from DC

Electromagnetic Interference (EMI)
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Fundamental Definitions

• A relative measure of a device or a system’s
propensity to be disrupted or damaged by EMI
exposure to an incident field of signal. It is the
lack of immunity

Susceptibility

• A relative measure of a device or system’s
ability to withstand EMI exposure while
maintaining a predefined performance level

Immunity
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Fundamental Definitions

• A Product’s relative ability to withstand
electromagnetic energy that arrives via free-
space propagation

Radiated Immunity

• A Product’s relative ability to withstand
electromagnetic energy that penetrates it
through external cables, power cords, and I/O
interconnects

Conducted Immunity



3

Giorgio Spiazzi - University of Padova - Italy

Fundamental Definitions

• A transfer of electric charge between bodies
of different electrostatic potential in proximity
or through direct contact. The term ESD is
generally applyed to events that are triggered
by human beings

Electrostatic Discharge (ESD)
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Fundamental Definitions

• A process whereby RF energy is prevented
from exiting an enclosure, generally by
shielding a product  within a metal enclosure.
Reciprocally, we can also speak of
containment as preventing RF energy from
entering the enclosure

Containment
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Fundamental Definitions

• The process of reducing or eliminating RF
energy that exists without relying on a
secondary method, such as a metal housing
or chassis. Suppression may include
shielding and filtering as well

Suppression
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EMI Transmission Path

SourceSource RiceiverRiceiverChannelChannel

Interference can be reduced acting on:

• Source (layout, filtering, shielding)

• Channel (layout)

• Receiver (layout, filtering, shielding)

NOTE: EMI is most economically soppressed
at the source in the design phase
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Relevant EMI “Components”

• Only one third of the components affecting
EMI are on the schematics

• Another third are parasitic elements within
components

• The final third are created by PC board trace
routing, and component mounting, placement,
and even orientation
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Resistivity of a Cylindric Conductor
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Resistivity of a Cylindric Conductor
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Internal and External Inductances
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Internal and External Inductances

[[ ]]li
W

o

r f
H m≅≅

1

4

1

ππ
µµ
πσπσ

     /
rW

rW

s

[[ ]]le
o

W

a
s

r
H m≅≅











µµ
ππ

cosh /
2

    

Giorgio Spiazzi - University of Padova - Italy

Impedance per Unit Lenght

0
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Two conductors AWG20 (26x34) at 2 mm distance
(copper): le ≈≈ 567 nH/m, rBF ≈≈ 26 mΩΩ/m
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Parasitic Components of a Capacitor
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Rs = series resistance (ESR)
Rp = parallel resistance

L   = series inductance (ESL)
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Parasitic Inductor
L = Ls+Li+Lw

Ls = inductance of the wound structure

Li  = inductance of internal leads
Lw = inductance of connecting wires
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 lw = lenght of connecting wires [m]
dw  = diameter of connecting wires [m]
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Parasitic Inductor
L = Ls+Li+Lw

Ls = inductance of the wound structure

Li  = inductance of internal leads
Lw = inductance of connecting wires
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Impedance of a “Real” Capacitor
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Impedance of a “Real” Capacitor
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Approximate Usable Frequency

Mica, Glass, Low-Loss Ceramic

Paper, Metalized Paper

High-K Ceramic

Al. Electrolytic

Tantalum Electrolytic

Mylar

Polystyrene

100 101 102 103 104 105 106 107 108 109 1010

Frequency [Hz]
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Parasitic Elements of an Inductor
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R = series resistance
C   = parallel capacitance
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Impedance of a “Real” Inductor
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Impedance of a “Real” Inductor
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EMI Common Sources
• Electronic circuits

– Diode recovery

– Switching components (SCR, IGBT, MOS)

– Driving current pulses
– Digital gates

• Magnetic components
– Transformers

– Inductors

• Circuit layout
– High dv/dt in long wires

– High di/dt in wide loops

– High current wires

• Mechanical switches
– relay (bounces, sparks, inrush currents
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Conducted Mode Signals
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Radiated Signals

EarthEarth EarthEarth

Differential mode Common mode
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Example of Radiated Signals

i'

i"

Power
Source

in

Boost rectifier
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Conducted Noise

+

- v noise

i noise

• Switching devices can be seen as noise generators impressing noise
voltages or injecting noise currents in the circuit

• Filters and parasitic elements must be taken into account in order to
determine noise current and voltage amplitudes

Common mode: parasitic
capacitances between AC hot
traces and chassis

Differential mode: current
ripples and spikes
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Radiated Electric Field

Parasitic capacities to free space

AC hot traces

Noise coupled to
core through
winding-core
capacitances
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Radiated Magnetic Fields

Typical input and output
switching loops

stray transformer
and choke fields
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Capacitive Coupling

U2NC12

C2G

R

U1

Conductor 1 Conductor 2

C12 = parasitic capacitance
between conductors 1 and 2
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Capacitive Coupling
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Capacitive Coupling
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Capacitive Coupling
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Capacitive Coupling
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Capacitive Coupling

U2N
C12

CSG

R

U1

Conductor 1 Shield

Grounded shield
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Capacitive Coupling

U1

C1S

CSG

C2S
Shield

U N2 0==

Grounded shield
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Spectrum Envelope of a Trapezoidal
Periodic Signal

A
ττ

t

x(t)

T

 duty - cycle
d

T
==

ττ

dBµµV

f [MHz]

2Af
f
o

ππ

2A d

2
2 2
Af

f t

o

rππ

f1
1

==
ππ ττ

f
tr

2
1

==
ππ



20

Giorgio Spiazzi - University of Padova - Italy

Spectrum Envelope of a Trapezoidal
Periodic Signal
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Effect of Duty-Cycle Variations
d2 < d1
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Effect of Duty-Cycle Variations
d2 < d1
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Effect of Rise and Fall Time Variations
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2Ad

1
1ππ ττr

1
2ππ ττr

ττr2 < ττr1dBµµV



22

Giorgio Spiazzi - University of Padova - Italy

Effect of Rise and Fall Time Variations
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Effect of Repetition Frequency Variations

f [MHz]
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f02 > f01

NOTE: change the distance between
discrete harmonics nf0
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Effect of Repetition Frequency Variations
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NOTE: change the distance between
discrete harmonics nf0
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Inductive Coupling

U2NM
i1

R2

R

L

+
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Inductive Coupling
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Voltage noise U2N induced in conductor 2
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Inductive Coupling
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Inductive Coupling
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Inductive Coupling

U2N
i1

R2

R

+

Shield grounded at both ends
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Inductive Coupling

U2NR

+

i1

R2
Shield

Shield acts as a short-circuited
transformer secondary

Shield grounded at both ends
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Chassis Ground

• Also often a “safety ground”
• Includes metallic chassis, framework, etc.

• Often tied to a true “earth”

• As a rule, not used as a power return
conductor (except in some low-voltage DC
applications, like autos)

• Also common mode conducted noise return
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Circuit Ground

• Usually refers to “circuit common”

• May be connected to chassis ground, but is best
considered as separate and isolated during design

• Often the negative rail in DC systems, but the positive
voltage rail may also be used

AC Quiet Rail
• Also known as AC LOW or RF LOW

• Used for local HF bypassing in EMI control

• Typically one of the DC or LF AC supply rails

• Not necessarely the same as circuit common
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Ground Plane

• Magnetic field reduction through image currents

• Electrostatic faraday shield
• Circuit common / power return

• AC quiet rail

• Thermal Heat spreader

• Printed circuit board stiffening
• Typically not connected to chassis ground, but may

be in some cases (usually undesirable for EMI)

A large metallic area (typ. on a PC board),
which serves as:
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Single-Point Grounding

The most sensitive circuit must be closest to
the physical ground point (#1)

#1 #2 #3

Series connection

0V

Z1 Z2 Z3
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Single-Point Grounding

#1 #2 #3

Parallel connection

Z1 Z2 Z3

Difficult at high frequency (long connections)

0V
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Multiple Ground Points

#1#1 #2#2 #3#3

Z1 Z2 Z3

Ground connection is minimized

0V
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Ground Plane as Return Current
Conductor

• Voltage drop on ground paths can be significant for high amplitude and
high-frequency currents

• Actual current path is that with lowest impedance

• Ground planes are preferable in high frequency applications

A - Signal path

B - Shortest low-frequency return
path (smaller resistance)

C - Shortest high-frequency return
path (smaller inductance)

Different current components
follow different return paths

Ground plane

Uac

A

B

C

Load
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Ground Plane Separation

GND1GND1

GND2GND2

Return currents of each circuit
remain separated
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Common Impedance Coupling Path

I1

Us2

+

ZL1Us1

ZL2
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ZC
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Noise Voltage
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Magnetic/Inductive Coupling Design
Considerations

• Parasitic inductance is reduced with:
– learger or wider conductors

– smaller conductor spacing (lower magnetic field
volume and energy)

• Magnetic field is reduced with:
– magnetic shielding (high permeability or conductive)

– generation of quadrapole (or higher order) fields with
ground planes (image currents), twisted wires, etc.
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Magnetic Field Reduction with a
Ground Plane

• Effect much higher behind ground plane
– front: reduction due to image currents

(quadrapole effect)

– rear: eddy current field cancellation

• Ground plane slits and slots under
conductors greately reduce its effectiveness

• Thin solid ground plane better than thick
planes with slits or slots
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Far Field Intensity
Monopole field:

Field intensity ∝∝ 1/R2

Dipole field:
Field intensity ∝∝ 1/R3

Quadrapole field:
Field intensity ∝∝ 1/R4
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Ground Plane Effect

Ground plane

E and H fields distribute themselves as if a mirror image
conductor existed at the opposite side of the ground
plane, with an equal current in the opposite direction

Transmission line impedance Zo is half of
“imaged” line impedance
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Magnetic Field Reduction with a
Ground Plane

Solid conductor ground plane

PC trace

Image
current

Counter-flowing image currents caused by a
ground plane create a quadrapole magnetic field
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Imperfections in the Ground Plane

An open path in the
ground plane creates a

“slot antenna”

A break in the ground
plane further reduces
image current effect

PC trace on the other side of
the PC board
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Printed Circuit Power Conductors

+

- +

- +

- +

- +

-

+

-

+

-

Patterns for magnetic mid and far field intensities

Best, but usually not practical

Very good, sometimes practical
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Printed Circuit Power Conductors

+ -

- +

+ -

- +

Quite good, usually practical for standard practice

Acceptable, due to quadrapole
field from ground plane

Ground plane

Image currents

Ground plane

Image currents

Patterns for magnetic mid and far field intensities
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Printed Circuit Power Conductors

Patterns for magnetic mid and far field intensities

+ -

+ -

Poor, large dipole field and high AC losses due to
current concentration on adjacent edges

Unacceptable, very large dipole field (lower
AC losses than the previous pattern)
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High di/dt Loops in a Forward Converter
1) Output transformer secondary - rectifier loop

1)

Vcc

VDRIVE

COM
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High di/dt Loops in a Forward Converter

2)

Vcc

VDRIVE

COM

2) Input switch-primary-bypass capacitor loop
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High di/dt Loops in a Forward Converter

3)

Vcc

VDRIVE

COM

3)

3)

3) Snubber loops on output rectifiers and input
switches
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High di/dt Loops in a Forward Converter

4)

Vcc

VDRIVE

COM

4) Switch drive loops
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High di/dt Loops in a Forward Converter

Vcc

VDRIVE

COM

5)

5) Output filter inductor-capacitor loops
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High di/dt Loops in a Forward Converter

6)

Vcc

VDRIVE

COM

6) Logic and control circuit loops, input filter
loops
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Avoiding Loop Antennas
Ring core
Inductor Snubber

component
layout
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Transformer External Leakage Field
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Transformer External Leakage Field
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Shielding High-Frequency Magnetic Field

• Using short circuit loops to generate an
opposing magnetic field

Example:
transformer

Winding

Conducting shield
acts as short
circuit loop
(reduces leakage
flux)

Core

Core
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Shielding Low-Frequency Magnetic Field
• Providing a low-reluctance magnetic path to

divert the field around the circuit being protected

Shielded
region

Magnetic field

Shield of magnetic
material
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Magnetic Field Minimization

• Minimize leakage fields from transformer
– use a sandwiched winding construction

– use an electromagnetic shield strap

• Minimize leakage fields from inductors
– avoid external air gaps

– use uniform windings on “powdered iron” type of
toroidal cores
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Electric/Capacitive Coupling Design
Considerations

• Much easier to shield than magnetic field
• Electric field sources of EMI can be reduced by:

– using power circuit topologies with low
semiconductor case AC potentials

– using power transformer electrostatic shields
– bypassing power magnetic cores to AC quiet

– minimizing AC hot conductors length and area,
increasing spacing

– using faraday shields (often ground plane)

• Conductor geometries which reduce mid and far
fields also minimize external noise pickup
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High dv/dt nodes in a Forward Converter

Vcc

VDRIVE

COM

1

1) Transformer primary driving secondary and
core (high node capacity)
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High dv/dt nodes in a Forward Converter

Vcc

VDRIVE

COM

2

2) Primary switch driving heat sink
(high node capacity)
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High dv/dt nodes in a Forward Converter

Vcc

VDRIVE

COM

3) Transformer secondary driving primary and
core (high node capacity)

3
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High dv/dt nodes in a Forward Converter

Vcc

VDRIVE

COM

4) Rectifier cases driving heat sinks
(high node capacity)

4
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High dv/dt nodes in a Forward Converter

Vcc

VDRIVE

COM

5) Primary switch “AC hot” PC trace

5
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High dv/dt nodes in a Forward Converter

Vcc

VDRIVE

COM

6) Output rectifier “AC hot” PC traces

6
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High dv/dt nodes in a Forward Converter

Vcc

VDRIVE

COM

7) Snubber and clamp nodes, in some circuits

7
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High dv/dt nodes in a Forward Converter

Vcc

VDRIVE

COM

8) Switch drive (particolary FETs)

8
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High dv/dt nodes in a Forward Converter

Vcc

VDRIVE

COM

9) Digital logic traces

9
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Electrostatic Shields in H.F. Transformers
Unshielded Transformer

Core

Primary to secondary
winding capacitance

Primary winding to
core capacitance

Secondary winding to
core capacitance
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Electrostatic Shields in H.F.
Transformers

Shielded Transformer
Shield

Alternative shield
connection

provided an input
bypass capacitor

is used

Noise current
path
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Electrostatic Shields in H.F.
Transformers

Incorrect shield connection

Noise current path
through large
ground loops
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Electrostatic Shields in H.F.
Transformers

Shielded Transformer: primary and secondary
shield connections

Giorgio Spiazzi - University of Padova - Italy

Electrostatic Shields in H.F. Transformers
Shielded Transformer: a third grounded shield can

now be used for safety and/or to minimize
feedthrough of source common mode noise

Common mode
Noise source
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Electrostatic Shields in H.F. Transformers
Check for shield current paths

Large current loop and
through ground

Small current loop
not through ground

Giorgio Spiazzi - University of Padova - Italy

Electrostatic Shields in H.F.
Transformers

Shield effectiveness at high frequencies is limited by
shield capacity and lead inductance. Use a series

resistance for damping

Resonant
circuit

Damping
resistance
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Electrostatic Shields Design Tips

• form a full coverage, non-shorting turn
• have uniform insulation thicknesses

• consist of relatively thin and resistive material
– 0.003” brass is generally suitable
– down to 0.001” brass preferred at f > 1MHz

• be center tapped

• have a short drain wire connection, preferably
foil closely spaced to foil winding breakouts

Electrostatic shield should:

Giorgio Spiazzi - University of Padova - Italy

Common Mode Noise Minimization

• Minimize AC hot traces on chassis side of PCB

• Use “common” traces to shield AC hot traces

• Avoid mointing AC hot cases on grounded heat sinks

• Tie power magnetic cores to AC quiet

Minimize all sources of HF AC coupling to chassis

• Keep primary and secondary circuits well separated

• Nearest primary and secondary conductors should
“commons”

• Use shields in isolation transformers

Minimize all coupling of HF AC from input to output
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Shielding AC Hot Traces and Cases

Shield

layout

Giorgio Spiazzi - University of Padova - Italy

Connection of Capacitors

Iin

Lm Coupling Lm Coupling

Mutual inductance coupling. The same Lm coupling
occurs with shorted, isolated PC traces of the same

geometry (typically 2-20 nH)
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Connection of Capacitors

Some Lm

Some ESL

Close spacing

Preferred alternative
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General Layout Considerations 1°

• In general, the power, drive, and logic physical layout
should resemble a neat schematic

• Keep isolated circuits physically separated

• Keep noisy power circuits away from logic and low-
voltage control circuitry

• Keep power switching circuits away from filtered
inputs and outputs

• Place drivers close to switches and away from logic
• Parallel discrete or dual diodes with caution: different

Trr can excite HF oscillations
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General Layout Considerations 2°

• Minimize component lead inductances
– surface mount components are preferred

– radial leaded components should be mounted
normal to the PCB (i.e. standing up)

– axial leaded components should be mounted
parallel to the PCB (i.e. laying down)

– keep leads as short as possible (ESL is
proportional to lead length

• keep snubber and clamp loops as small and
close to snubbed devices as possible
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Linear Power Path

In
p

u
t Input

filter
Switching &
rectification

Output
filter

O
u

tp
u

t

Drive

Control Iso.

Sensing

Minimize noise coupling from switching circuits
into input and outputs

AuxAux
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Folded Power Path 1°

In
p

u
t Input

filter

S
w

it
ch

in
g

 &
 r

ec
ti

fi
ca

ti
o

n

Output
filterO

u
tp

u
t

D
ri

veControl

Iso.

Sensing

A
u

x

Still good layout
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Folded Power Path 2°

In
p

u
t Input

filter

Switching &
rectification

Output
filterO

u
tp

u
t

D
ri

ve

C
o

n
tr

o
l

Iso.

Sensing

A
u

x

Less desirable layout


