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 Mathematical operators and their properties
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phase networks
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Extension to poly-phase domain: 3-wires / 4-wires

Sequence components under non-sinusoidal
conditions

Measurement & accountability issues



1. Motivation of work
Why do we need to define power terms

e Describe physical phenomena
® energy transfer,
® energy storage,
e rate of utilization of power sources and distributio
Infrastructure,
e unwanted voltage and current terms, ....

e Allow unambiguous measurement of quantities
¢ |oad and source characterization,
® revenue metering, ...

e Compensation
¢ |dentify provisions which make the equipment or the
plant compliant with standards & regulations in ter
of symmetry, purity of waveforms, power factor ...
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1. Motivation of work
Few basic questions

While the definition and meaning of  instantaneous
power and its average value ( active power ) are
universally agreed, the situation is less clear wit h other
popular power terms

e \What is/means reactive power ?
e \What is/means distortion power ?
e \What is/means apparent power ?

These power terms are unambiguously defined when at
least the voltage supply is sinusoidal, but are mat  ter of
controversial discussions (since nearly one century ) In
case of distorted voltages and currents.



1. Motivation of work
Milestones of power theory history

v" In the frequency domain

» Budeanu ((19527))
» Sheperd & Zaditzami (1))
» Czarnecki ((198H4...))
v In the time domain
> Fryze (1931)
» Kusters &Nbmwes((BYH))

» Depenbrock ({B933)
> Akagi & NNddzeee (1983)

* No one of these theories was able to target all goa Is (characterization
of physical phenomena, load & line identification, compensation).

* The time-ahwmeam thieamny presanttsd ene tridésds tatgedallajibgoalalatathne
same time.
* [t represents an outcome of a lahong-sttamal imy compenattam desttwassm

UNIPD, UNICAMP and UNESP.
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1. Motivation of work
Need for a revision of power terms

In modern scenarios (e.g., micro-grids) where:

¢ the grid is weak,

e frequency may change,

¢ voltages may be asymmetrical,

e distortion may affect voltages and currents,

are the usual definitions of reactive, unbalance an  d
distortion power still valid ?

Which is the physical meaning of such terms ?
Are they useful for compensation ?

To which extent are power measurements affected by
source non-ideality ?

It is possible to identify supply and load responsi bility
on voltage distortion and asymmetry at a given net  work
port ?



Conservative  pepartment of
POWGF The()ry ENGINEERING

2. Mathematical and physical foundations

Definition of mathematical operators and their
properties

Definition of instantaneous power and energy terms
Conservative quantities
Selection of voltage reference

Definition of average power terms and their physica
meaning in real networks
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Mathematical operators for periodic
scalar quantities

Let T be the period of variables x andy, we define:

_ 1T
« Average value X = (x) :?J'O x(t) dt
__dx
» Time derivative =5
» Time integral XFISX(T)C'T
« Unbiased time integral X=X =X
1T
e Internal product (%) —;jo x [y dt
« Norm (rms value ) X =] = /(X x)

e Orthogonality (x,y)=0

U@



Mathematical operators for periodic
vector quantities

Let X and y be vector quantities of size N, we define:

N
e Scalar product ZX Ya
N
« Magnitude ¥ =yxox= >
n=1

e Internal product <__> < X> %<Xn V)

n=1

+ Norm IR =3 0500) =[S

» Orthogonality <l"l’> =0

e The vector norm is also called

collective rms value

U@



Properties of mathematical operators
(valid for scalar and vector quantities)

The above operators have the following properties:

: X, X) =0 XX)=0
o Orth.ogonallty EX, )A(; 0 — 25, X; 0
e Equivalences
(x5)==(x.y) (x3)=~{x.y)
(% 9) = =(X%¥) = (%9)=~xy)
===y (y)=~{xy)=~{x9)

 For sinusoidal quantities

- - Il _ 1,. 5 5 9 5 )V(Z ,
X=q=wfg==8  x®+a5®=x"+=;=2X

(X,y) =XYcosg (X,y) =—XYserp

U@

10



Instantaneous power definitions
(for periodic variables)

Given the vectors of the N phase currents 1, and voltages
u, measured at a generic network port we define:

L
=

N
Instantaneous (active) power: =ull=) Uy
n=1

Instantaneous reactive energy
(new definition ):

=

1
I=)
=

1
1=
::C)
3||
1=
=

>
1
[EN
=)
Il
(WY

e Both quantities do not depend on the voltage refere nce
e Both quantities are conservative In every real network

U@
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Conservation of instantaneous
power and reactive energy

U@

For every real network 1, let u and 1 be the vectors of
the L branch voltages and currents, we claim that:

v' Branch voltages , their time derivative and unbiased
Integral are consistent with network  m, i.e. they
comply with KLV  (Kirchhoff’'s law for voltages)

v' Branch currents , their time derivative and unbiased
Integral are consistent with network T, I.e. they
comply with KLC (Kirchhoff’s law for currents)

Thus, according to udl=00 =00 =0
Tellegen’s Theorem all IS
guantities shown here are ull=ull =0
conservative ull=ull =0

12



Average power definitions
(valid for periodic quantities)

Active power:
Reactive energy:

Apparent power:

Power factor:

P=p=(ui)
W =W =(G,i)=~(ui)
A=ulfi = U1

e All quantities are defined in the time domain.

» Reactive energy is a new definition

analyzed in the following.

 Active power and reactive energy are conservative

guantities which do not depend on the voltage refer
* Unlike P and W, apparent power A is non-conservative and

, whose properties will be

ence.

depends on the voltage reference . Skip voltage reference

U@
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Selection of voltage reference (1)

(u.i < ] :W:QQ

Cauchy-Schwartz
iInequality:

The equal sign is
possible if:

WOl = fud=Rlil = b=

We select the voltage reference so as to ensure uni  ty
power factor in case of symmetrical resistive load. This
gives a physical meaning to the apparent power , which
Is the maximum active power that a supply line rated

for V... Volts and | .. Amps can deliver to a (purely
resistive and symmetrical) load

U@
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Selection of voltage reference (2)
N-phase systems without neutral wire

The proportionality condition u=Ri

between phase voltages and N \
currents for symmetrical resistive Zin =0 = Zun =0
load determines voltage reference n=1 )

Thus, the voltage reference must be selected to com  ply
with the zero-sum condition:

N N 1 N
D=0 = Dl Uer)70 S U =D U
n=1 n=1" v g =1

Un

This choice minimizes the norm of the voltage vector

15



Selection of voltage reference (3)
N-phase systems without neutral wire

Measurement of voltages and currents
SOURCE LINE LOAD




Selection of voltage reference (4)
N-phase systems with neutral wire
In case of symmetrical resistive load the proportio nality

condition between phase voltages and currents holds only
If the voltage reference is set to the neural wire.

Uess =U, =0 = u,=Ri,,n=0+N

Unity power factor may occur only if the neutral cu rrent Is
disregarded for apparent power computation (only ph ase
currents are considered). Thus:

A=P=UI, \/;[ \/Z—u] = ﬁ?ﬁ[yﬁ %ﬁ}

17




Selection of voltage reference (5)
N-phase systems with neutral wire

Measurement of voltages and currents

SOURCE LINE LOAD
y |
I
I
el | '
vsn I; | 1 30 1020 @i}) 3 R L |

II =y M— TN LR S | 0 I
o123, [, 1S=—————= I - ’

" N N
Collective rms voltage u=[>u? =12
and current — —
Homopolar voltage S 1N L1 Ni i
and current . ‘ﬁnzzll“n ! ‘ﬁnzzll nTTN
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Power terms in passive networks

Resistor

U@
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Power terms in passive networks

Inductor

P ={u,i)

Inductor
energy

U@
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Power terms in passive networks

Capacitor

Capacitor 1 .- _ 1
energy

U@
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Active and reactive power absorption of a
linear passive network Tt

Tt

the origin of reactive
energy, including
active and nonlinear
loads, it can be
compensated by
reactive elements
with proper energy
storage capability
Total active power and reactive energy

L N
P={u,ij)=) P =Py,
=1 n=1
L

L=N+M+K

M\~  Nresistors
N

M inductors

—— Kcapacitors

Remark: Whichever is

M K M K
W=Z<Gl’i|>: Wl—m +ZWCk :Z(ZELm _ZECk) :2(ELtot _ECtot)
=1 =] k=1 m=1 k=1

U@
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Seminar Qutline

Definition of current and power terms in single -phase
networks under non-sinusoidal conditions

Extension to poly-phase domain: 3-wires / 4-wires

. Seguence components under non-sinusoidal
conditions

Measurement & accountability issues
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Conservative  pepartment of
POWGF The()ry ENGINEERING

3. Definition of current and power terms in
single -phase networks under non -
sinusoidal conditions

Orthogonal current decomposition into active, react ve
and void terms

Physical meaning of current terms

Apparent power decomposition into active, reactive and
void terms

Physical meaning of power terms
Application examples o
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Orthogonal current decomposition in
single -phase networks

(voltage and current measured at a generic network port)

v" Current terms

| :|a+|r +IV :|a+|r +|sa+|sr+|g

J

Vv

Vv

e i, active current e |, Scattered active current
e |, reactive current e |, Scattered reactive current
e |, void current * I, generated current

v Orthogonality : all terms in the above equations are orthogonal

2 W 02 2 e 2l 12 ol 12 o 12 ol 12l 12
7 =l [+l =l +fsal”™ s ” + i
g

U@
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Orthogonal current decomposition in
single -phase networks

(voltage and current measured at a generic network port)

v Active current : the minimum current (i.e., with minimum
rms value) needed to convey the active power P flowing

through the port

:<u,i> _P
Ju

a ‘ZU_UZ

e

Fa :<u’ia> :Ge<U,U> =G,U?=P
W, =(0,i,) = Gg(U,u) =0

u = port voltage
U = rms value of port voltage
G, = equivalent conductance

Active current conveys full
active power and zero
reactive energy

U@
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Orthogonal current decomposition in
single -phase networks

(voltage and current measured at a generic network port)

U@

v Reactive current : the minimum current needed to
convey the reactive energy W flowing through the port

Ay w | g
l, =——-U=—U=BU B, = equivalent reactivity
o o
P = <u, ir> = Be<u1 g> =0 Reactive current conveys full
- - . reactive energy and no active
W, =(G,i, ) = Be(0,0) = BU~ =W| power
_ N\ _ Active and reactive current
<'a"r> GeBe<u’u> B O‘ are orthogonal

27



Orthogonal current decomposition in
single -phase networks

(voltage and current measured at a generic network port)

v Void current : is the remaining current component

== =i

Void current is not conveying active power or react Ive energy

R =(uiy) = (ui)=(uis)=(ui,)=P-P,-R =0
W, = (0,i,) =(G,i)=(0,ip)=(0,i; ) =W -W, =W, =0

Void current is orthogonal to active and reactive t erms

(iy+ia) = Geliy,U) =GR, =0
(i) = Be(iy,U) = BAN, =0

U@
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Orthogonal current decomposition in
single -phase networks

(voltage and current measured at a generic network port)

The void current reflects the presence of scattered active |
scattered reactive and load-generated harmonic terms

R
g

Scattered current terms Load-generated current
Account for different values of harmonics :

equivalent admittance at Harmonic terms that exist in

different harmonics currents only, not in voltages

harmonic currents are
orthogonal

- Scattered and load-generated
<|Sr,|g> =0

(ismisr) = (isarig) =

Skip void current components

U@



Orthogonal current decomposition In
single -phase networks

Scattered active current

For each co-exxssinty Haannoomic coonpooeenss of voltdige e
and cumrent wee define:

v' Harmonic active current terms
:<uk’ik>u :iu = IkCOS¢k
ak 2 k U 2 Yk U

ug| : (

u, =Gu,

isa:iha_ia:Z:(Gk_Ge)uk sa — Pha_Pa:O’ Wsa:O

U@
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Orthogonal current decomposition In
single -phase networks

Scattered reactive current

For each co-exxssinty Naannoomic coonpooeenss of voltdige e

and cunmrent wee define:
v Harmonic resentbivee qrureeTit teemss
_akl sing, _

W
U == U = Uy = B Uy
h U,

v Total harmonic reactive current

ihr = Zirk Whr = Z\Nk :Wr =W, I:)hr =0
kOK kOK

v’ Scattered reactive current

lgr =y =1 Z(Bk B )Gk W, =W, -W =0,

PSI’ :O

U@
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Apparent power decomposition in in
single -phase networks

A= || =U 1 =(P? QP +V?

v" Active power:
v Reactive power:

v Void power:

v' Scattered active power:
v’ Scattered reactive power:

v Load-generated harmonic
power:

P =|ulia] =V 1

Q=[uffir||=u 1,

V=] =01, =S+ 7 Vg

S, = Ul lllsql =V I 44

Sf: u iSI‘ :UISI'

Vg = |ul ‘ig

=U I,

U@
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Reactive Power

U@

U and U can be decomposed in
fundamental and harmonic

U =,JU2 +UZ =U/1+[THD(u)]?

components - - — =
(THD means total harmonic distortion) U= \/Uf +Uﬁ =Uj \/1+[THD(U)]2
Recalling that: U+ /Uf —w

U 1+ [THD(u)?
We have: Q:UIr:TszW\/ : ()

’ J1+[THD(a)f

Note that, unlike reactive energy W, REACTIVE POWER Q
IS NOT CONSERVATIVE. In fact, it depends on line
frequency and (local) voltage distortion.
Under sinusoidal conditions, the definition of Q
coincides with the conventional one



Void Power Terms

Void Power: |V =UI, =/S2+S2+V/

v’ Scattered active power:

P
Sazulsa: Uzgl[ k_ _
\/ kK } UIE u?

v’ Scattered reactive power:

_ L+THD] \/A2 [
Ul = U
> \/1+THD2 k%;} U

v’ Load-genenatied amomic pomwer:
V,=U I,

Skip examples

U@
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Application Examples

Example #1
Voltage amdl Cumnrent : Fossssitvee Llozat

U@

Upce Ipce [PU]
Upce Ipcc [PU]

| ]
0.1 0.11 0.12 0.13 0.14 0.15 0.16 01
Time [s]

Sinusoidal voltage

Current =1 ,,(t)/2

| |
0.11 0.12 0.13 0.14
Time [s]

Non — sinusoidal voliage

35



Application Examples

Example #1
Conservative Pooveer Temms: ARRessine Llomad

PO=UO  p=p M =u®iy P=p

U@

[pu]

-0.5\/ S\ S )

qt) = wait), Q= a)w(t) Ulsing qH) ="wa@®itty = . Q. | |
0.1 0.105 0.11 0.115 012 0.125 0.13 0.135 0.1 0. 105 0.11 0115 012 0.125 0.13 0.135
Time [s] Time [s]
Sinusoidal voltage Non — sinusoidal voltage

This example shows the correspondences between the
CPT theory and conventional theory

36



i, [pu]

i [pu]

i, [pu]

ipcc [PU]

0.25

-0.25

; ; ; : ;
7777777 L777777\7777777\7777777\7777777\77 ]
I | | | |
| | | | |
: : : : ‘ []
025 --———- . L L L N

Application Examples
Example # 1 — Single-pitese

U@

Current TE&mls R&ss:ﬂtue I_Io:mﬁ

.16

1

-0.5

0.

L L
0.13 0.14

Time [s]

Sinusoidal voltage

L L
1 0.11 0.12

PCC
current

Active
current

Reactive
current

(D=0

Void
current

I, ()=0

—
5
o
—
(@]
(@]
a

,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,

**************************************

7777777777777777777777777777777777777777

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
|

*********************************

|
';‘ | |
o oo -\ ___ 4 _ [ T (I W A
= | | |
ffffffffffff
Al N N N
0.1 0.11 0.12 0.13 0.14 0.15 0.16
.5 T T T T T
| | | | |
0.25 -\~ - o o oo e
—_ | | | | |
2 [j : : : :
— | | | | |
T e SRR SR e R
05 | | | | |
0.1 0.11 0.12 0.13 0.14 0.15 0.16
05 T T
| |
0.25 -~ -~ - — e R —
'; | |
o |
: [p—
-0.25- - V- e e e e E
-0.5 1 I | I I
0.1 0.11 0.12 0.13 0.14 0.15 0.16
Time [s]
Nbion — sinusoidal voltage
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Upcc ipec [PU]

Application Examples
Example # 2

U@

Voltage amatl Cumnrent : Chimnncc-imoblatives LLaesdi

1.5

Upce Ipce [PU]

\ ; ‘ ‘ 1
0.32 0.33 0.34 0.35 0.36 0.3 0.31 0.32 0.33 0.34 0.35 0.36

0.3 0.31
Time [s] Time [s]
Sinusoidal voltage Nbion — sinusoidal voltage

38



[pu]

Application Examples

Example #2
Conservative Peoveer Temms: @bmmaec-1imalucties L arsa

U@

p(t) x U(t)l(t) p=3

,,,,,,,,,,,,,,,,,,,

A

[N

0 _

a) = @i  Q=ew=Usig  qU=wlQin Q.
0.3 0305 031 0315 032 0325 033 033 03 0305 031 0315 032 035 033 0335
Time [s] Time [s]

Sinusoidal voltage Nbion — sinusoidal voltage

This example shows the correspondence between CPT
and conventional tiibeory under sinusoidal conditions
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i [pu]

i, [pu]

iy [pu]

Application Examples

Example # 2
Current TErmss: (mhmu: mﬂimthx&u_comﬂ

ipcc [Pul

Active

’j Reactive

current o

36 by
0.5

Void - &

| | | | | current - -0.25
05 | | | | | 05 | | | | |
0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.3 0.31 0.32 0.33 0.34 0.35 0.36
- . Time [s] Time [s]
Sinusoidal voltage

Nbion — sinusoidal voltage
40
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Physical meaning of void current

Example #2
Void Qumemt Terrmss: @Qimmaec-imatluctives Lassa

) :’ Void current
36

L L L L L
0.3 0.31 0.32 0.33 0.34 0.35 0.

iy [pu]

- :’ Scattered active current

i [PU]

1 L 1 L L |
0.3 0.31 0.32 0.33 0.34 0.35 0.36

0.2
S ’ :} Scattered reactive current

-0.2 | | | | |

0.3 0.31 0.32 0.33 0.34 0.35 0.36

0.2

e e e TR
2 ‘ ‘ ‘ ‘ ‘ Load-generated
B harmonic current

-0%.3 O.‘31 O.‘32 O.‘33 O.‘34 O.‘35 0.36

Time [s]
Non — sinusoidal voliage

U@
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Upcc Ipcc [PU]

Voltage amil Cuinrexni

Application Examples

Example #3

Conservative Feoveer Temms

U@

031

() = i)

Distorting Lbadd Distorting Lbadd

. o Q=ew . P=p |
N | [N N
go.s 77777777777777777777777777777777777777777
? T A
| | 0 {1 l{ 1A [
‘ ‘ \Va

—4
p(t) = Uiy

| | | ‘
0.315 032 0.325 033 0.335 0.3 0.305
Time [s]

Non — sinusoidal voltage

|
0.31 0315 0.32 0.325 0.33
Time [s]

0.335

42



i, [pu] iy [pu] ipcc [PU]

iy [pu]

Physical meaning of void current
Void Qumemit Termss: @hmmec-imaluattves L asal

Time [s]

Non — sinusoidal voltage

U@
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i, [pu]

isa [PU]

iy, [pu]

i, [pu]

Physical meaning of void current
Void Qumemit Termss: @hmmec-imaluattves L asal

L
0.31

L
0.32

1 L
0.33 0.34 0.35 0.36

L 1 1
0.33 0.34 0.35 0.36

L L L
0.33 0.34 0.35 0.36
Time [s]

U@

d Void current

:’ Scattered active current

:} Scattered reactive current

Load-generated
harmonic current

Non — sinusoidal voliage
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Seminar Outline

U@

Motivation of work

Mathematical and physical foundations of the theor y

« Mathematical operators and their properties

 Instantaneous and average power & energy termsinp  oly-
phase networks

Definition of current and power terms in single -phase
networks under non-sinusoidal conditions

Extension to poly-phase domain: 3-wires / 4-wires

Sequence components under non-sinusoidal
conditions

Measurement & accountability issues
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4. Extension to poly -phase domain:
3-wires / 4 -wires

Orthogonal current decomposition into active, react ve,
unbalance and void terms

Physical meaning of current terms

Active power decomposition into active, reactive,
unbalance and void terms

Physical meaning of power terms

46



Orthogonal current decomposition

Extension to poly -phase: 3 -wires /4 -wires

In poly-phase systems, the current components (active,
reactive and void) can be defined for each phase:
v Active current

U@

RECI iu -Gy, n=i:n|  |Pa=(Wla)=P
Jua” W, =(0,i,) =0
| G, = equivalent phase conductance Ia_HUHH'aHiP

v Reactive current

= (i 0,=21q, =B,0,, n=1+N o= {uig)=0

[ W, = (@i, ) =w

B, = equivalent phase reactivity U | r HHH H'—rH =W

Hily

v Void current P, =(ui,)=
lin =1h “lan=ln, N=1=N ul,>0

W, =(d,i,)=0

47



Orthogonal current decomposition
Extension to poly -phase: 3 -wires /4 -wires

Active and reactive current terms can also be defin  ed
collectively, i.e., by making reference to an  equivalent
balanced load absorbing the same active power and
reactive energy of actual load:

v Balanced Active currents:  minimum collective
currents needed to convey active power P

. b— .
b <u,|> P GP= equivalent balanced conductance

U@

-
la

TP v U 13 =l

:P’ Qg:O

v Balanced Reactive currents:  minimum collective
currents needed to convey reactive energy W

BP = equivalent balanced reactivity

b _ ()

|- =
Jof

W,
i, U=—0=B"0
U

U7 =[al |iy

=W, P°=0

48



Orthogonal current decomposition
Extension to poly -phase: 3 -wires / 4 -wires

U@

Unbalanced currents account for the asymmetrical

behavior of the various phases

v Unbalanced Aftiwe cureeriss

- b

_a -a

=

iy :(Gn —Gb)un

n=1+N

v Unbalanced Asstinee aumearis

o

n=1+N

PY=pP,-P?=0
WY =

R =0
W' =W, W =0

49



Orthogonal current decomposition
Extension to poly -phase: 3 -wires / 4 -wires

v Void currents: as for single-phase systems, they
reflect the presence of scattered active, scattered
reactive and generated terms.

. _ . . . n S n n
I_v _ I_ I_a I_r I_a + I_r I_g
Scattered current terms Load-generated harmonic
Account for different values of current :
equivalent admittance at Harmonic terms that exist in
different harmonics currents only, not in voltages
R.=P-P,-F.=0
W, =W -W, -W. =0

U@
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Orthogonal current decomposition
Extension to poly -phase: 3 -wires /4 -wires

v" Summary of current decomposition

- - . . _.b - U - b - U - S - S .
I__|_a+|_r +|_v _|_a+|_a+|_r +|_r +|_a+|_r +|_

v/ 1, active currents

« i.° balanced active currents

e 1Y unbalanced active currents
v/ 1, reactive currents

-
« i, balanced reactive currents

e 1Y unbalanced reactive currents
v 1, void currents

e 1.5 scattered active currents

e 1,5 scattered reactive currents

* 14 load-generated harmonic currents

U@
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Orthogonal current decomposition
Extension to poly -phase: 3 -wires /4 -wires

U@

v' Summary of current decomposition

+i iy, =i, Fig i, Fi Fi Fi
i iy i,

Each current component has a precise
PHISICAL MEANING and is computed in the time domain

Moreover, all current terms defined in the above e  gquation
are ORTHOGONAL, thus:

2 12 e 12 g 112 2 .pll2
" =i i + i) = +if] +

2
+i"

-a

2 2
- b - U - S - S
L 8/ (Y I

2 ] 2
*i
-9
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Apparent power decomposition in in
poly -phase: 3 -wires / 4 -wires

A=UL =[u]i| = /PP +Q +NZ V2

Active power:

Reactive power:
Unbalance pmwear:

Void power:

P=U12 =|ulliz
Q=U 1P =|uli®
N =U 1Y =[ul[i] = N2+ N2

V=Ul, =|u]fi,] =82+ 82 +V¢

U@
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Unbalance Power Terms

Unbalance pawear:  |N :\/N§+Nr2

v Unbalance Active Power

N 2
P, P
N.=UI= =U n—
Y \/Ziuﬁ >
v Unbalance Reactive Power
1+[THD(U)® | w, w?
N, =U I =wU \/ ( )j \/Z - —VYZ
Ji+[tHD@)P Vimus U

Unbalance active and reactive power vanish

If the load Is balanced

Skip examples

U@
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Upce & 1 pec[pu]

Application Examples

Example #1 : 3-phase 3-wire — Balanced |tz
(Resistive)

Voltage amil Cunrexni

Conservative Feoveer Temms

05

‘ 1
0.31 0.32 0.33 0.34 0.35 0.36 0.3 0.31 0.32 0.33 0.34 0.35
Time [s]

Sinusoidal voltage

Current =1 ,,(t)/2

U@

0.36
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b Ipul

i’ [pul

iy, [pul

iy, [pul

i, [pul

Application Examples
Example #1 : 3-phase 3-wine — Balanced |tz

U@

(Resistive)

| : | | |
1 I I I I I
)Y (I ‘ —O)----- [E i
. | CiM=0
o5 . o B -
1 | | | | |
0.3 031 03 03 03 03 0.3
1 I I I I I
05 B e N -
0 | i m=0"
T e — SR -
1 | | | | |
0.3 031 032 033 034 035 036
1 I I I I I
O Fo— - Uy ty=0---------- .
05 | | r 'r (t) \0 |
0 l l l l l
o5 . S S -
1 | | | | |
0.3 031 032 033 034 035 036
1 I I I I I
08—t ()= 0
0 l l l l l
o5 . o B -
1 | | | | |
0.3 031 032 033 034 035 036
Time [s]

:’ Balanced active currents

:} Balanced reactive currents
:’ Unbalanced active currents

:} Unbalanced reactive currents

:’ Void currents

56



Upcec & i pec [pU]

Application Examples

(resistor connected between two phases)

Voltage amtl Cunrent

Example #1 : 3-phase 3-wire — Unbalanced |é@at

U@

Conservative Pooveer Temms

AAAAANN
R

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Sinusoidal voltage

Current =1 ,,(t)/2
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[pu]

s u
lan

i u
ll'

[pu]

i’ [pul

ib [pul

. [pul

Application Examples
Example #1 : 3-phase 3-wire — Unbalanced |é@at

U@

(resistor connected between two phases)

:’ Balanced active currents

.36

:} Balanced reactive currents

.36

d Unbalanced active currents

-%.3 0.‘31 0.‘33 0.‘34 0.36

1 T T T T T

| e~ — - - b I

| | AN 4 :} -

0 ] |

05>Z/\B4/ W 7 Unbalanced reactive currents
%.3 0.‘31 O.‘32 0.‘33 0.‘34 O.‘35 0.36

1 T T T T T

05f - SRR - i =0 . .

o———— (=0 :’ Void currents
05F---- - (. N R i

-%.3 0.‘31 O.‘32 0.‘33 0.‘34 O.‘35 0.36

Time [s]
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Application Examples

U@

Example # 3 : 3-phase 3-wine
Three-phase RL + Single - pblasscRR daad

Voltage amtl Cunrent Conservatlve H%weer 'Il'ermms
\ ‘ ‘ ‘ !

U Ya U Ll

- ; | | | ; [ ; ; | | ;
0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.3 0.31 0.32 0.33 0.34 0.35 0.36
Time [s] Time [s]

Symmetrical non-sisinsciuidaleltiigge
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iy, [pul

. [pul]

Application Examples

Example # 3 : 3-phase 3-wine
Three phase RlL% Single-piese R |nad

dBalanced active currents

; 1 1 1 1
0.31 0.32 0.33 0.34 0.35 0.36

—————————————————————————————————————————

6'6’66'6"6’6’6’#6 :} Balanced reactive currents

””””””””””””””””””””””””””””

:’ Unbalanced active currents

II} Unbalanced reactive currents

i, [pul

| om0 0Pm 0000 d Void currents

1 | 1 1 |
0.31 0.32 0.33 0.34 0.35 0.36

Time [s]

Symmetrical non-sisinssuidiayelitgge

U@
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Sharing of compensation duties °

v Orthogonal current tetenms :
|:|a+|r+|v:|a+|a+|r+| Isa ISr I
- -a -r -v -ca -a - -r - -sr ~ -g
n L] - Vv g
I I I,

Each current component has
a precise PHYSICAL MEANING

v’ Balanced Active currents  convey active power P
v’ Balanced Reactive currents convey reactive power Q

v Unbalanced Active and Reactive currents account for
asymmetrical behavior of the various phases

v" Void currents reflect the presence of different behavior at
different flfeemescossaanndon ygaeeedted cucrend manaromicscs 61



Sharing of compensation duties

U@

- - . . _.b .b - U - U
I__I_a +I_r +I—V _I_a ++I_a +I_r

/

Unbalance
Reactive compensation
compensation requires controllable

reactances (extended

ﬁ Steinmetz approach)

Stationary Compensators a
(reactive impedances) Quasi-
& Stactionary
Quasi-Stationary Compensators
Compensators (SVC, (SVC)

Static VAR Compensators)

]
\

Harmonic

compensation
requires high-
frequency response

.

Passive filters &

Switching Power
Compensators
(SPC=APF+SPI) ,



Effect of compensation on
power terms

U@

Active power (balanced) : - Compensation
Reactive power (balanced) : [Q@= Ul ? OfrF. o
Unbalance power |\|:U|U:U\/|glz+|lr*2 O 0
Void power : V=UI, 0. o

APPARENT POWER

A=UI=,P2+@2+N2+X2| |OEFEF. A=ulb=P

63



Seminar Outline

U@

Motivation of work

Mathematical and physical foundations of the theor Yy

« Mathematical operators and their properties

e Instantaneous and average power & energy termsinp  oly-
phase networks

Definition of current and power terms in single -phase
networks under non-sinusoidal conditions

Extension to poly-phase domain: 3-wires / 4-wires

Sequence components under non-sinusoidal
conditions

Measurement & accountability issues
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Conservative  pepartment of
POWGF The()ry ENGINEERING

11U @

5. Sequence components under non -
sinusoidal conditions

Problem statement
Goal of decomposition
Derivation of generalized symmetrical components in
the time domain (extension of Fortescue’s approach)
4. Analysis of generalized symmetrical components in
the frequency domain

Orthogonality of sequence components
Application examples

W=

o o

Skip 65




1. Problem stttameanit(()

U@

v Symmetrical components are very useful to
simplify the analysis of three-phase networks
under sinusoidal conditions

v It is important to extend the definition and

application of symmetrical components to
non -sinusoidal periodic operation

66



1. Problem stetamenit(Q)

v" Given periodic three-phase variables  f(t), f (t), f.(t) of
period T we define the following symmetry
properties :

e Homopolarity (zero symmetry)
falt) = fi(t) = f.(t)

e Positive (direct) symmetry

f(t)= fb(“%j = fC(t+2_Tj

3
e Negative (inverse) symmetry

f(t)= fbtt—%j = f{t—%j

U@
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2. Goal of decomposition

v Given a set of generic three-phase variables:

= fo(t)

we decompose them inthe orthogonal form:

f:fZ+fh:fZ+fp+in+iI’

where:
e fZare zero-sequence (homopolar) components
e f N are non-zero sequence (heteropolar) components
e fP are positive-sequence components
e f N are negative-sequence components
e fTare residual components

U@
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3. Derivation of generalized
symmetrical components

e Zero sequence (homopolar) component

f2=f2(t)|1

1

1

of)= fel)* 10+ £0)

- 3

e Heteropolar components

U@
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3. Derivation of generalized
symmetrical components

e Positive sequence component

: p(t)=%{fah(t)+ W(erg) f°h(”£ﬂ

3

Q0= 10 120=17(-T) 0= (-

3

>

e Negative sequence component

U@
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3. Derivation of generalized
symmetrical components

e Residual components

U@

=1 0) - : j >

e Note: these components are computed independently
for each phase and vanish in sinusoidal operation

71



3. Derivation of generalized
symmetrical components

e Resulting decomposition

f2(t)+ £ P(t)+ £ (t)+ £, (t)

f2(t)+ £ P

f2(t)+ £P

3

3

t—1)+ f”(t+%)+ £ (t)
t—2—Tj+ f”(t+%)+ £ (t)

U@
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4. Analysis In the frequency domain

Expressing variables f_(t), f (1), f.(t) in Fourier series:

fa(t) = i fak(t) = i‘/ilzak sin (kwt + aak)

k=1

folt) = i foi(t) = i‘/EFbk sin (kat + )

00

()= ful)= Y V2R sin(kot + ag,)

k=1 k=1

we can determine, for each harmonic, the zero, posit
and negative components  f %4(t), f P (), f ", (t). Instead,
residual harmonic components are zero  because
harmonic quantities are sinusoidal.

ve,

U@
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4. Analysis In the frequency domain

Contribution of harmonic sequence components to
generalized sequence components

Harmonicorder:k =3m+1  Om(|0, o]

fo=1f, f/=f, f{f=1°

Harmonicorder:k =3m+2 [m[] [O,oo]

fP=f" f'=>fP fi=f,

Harmonicorder:k =3m [m[] [O,oo]
fP=f" f'=>f", ff=>f°
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5. Orthogonality of components

Given two sets of three-phase quantities f and g,
their sequence components obey the following
general rules:

v Scalar product
fzogh:izogp:fzogn:izogr -0

v" Internal product

(1.0")=(17.0)=(1"g") =0

(1.9)=(f%g%)+(f"0")=(f%0%)+(f".9")+(1"g")+(1".

v" Norm

2
1] =

2 2 2 2 2
i I I TS

.I:Z

.I:Z

fn

fr

U@
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6. Application Example

. 1 . 1 . 1 . 1
V.(t)=sin(at + —sin(3at + —sin(5at +—sin(at )+ —;
(1) (at) 3 (St ) c (Sat) 10 (at) 10

. 27T, 1 . 27, 1 . 27T 1 . 1
V.(t)=sIin(ect —— )+ —sIn(3at +— ) +—sIn(5at — +—sin(at )+ —;
H(1) ( 3)3 ( 3)5 ( 3)10 ()10

v.(t) = sin(at + 25y + L sin(@at - 25y + L sin(et + 2+ L sin(at )+ —;
37 3 3’5 37 10 10

Line to Neutral Voltages

15

-1.5
0

U@
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6. Application Example

v, (t)=sin(at) +%sin(3a1) +%sin(5a1) +i5in(6(1)+i'

10 10
1 2T, 1 27T

. 27T . . ] 1
V.(t)=sIin(ect —— )+ —sIn(3at +— ) +—sIn(5at — +—sin(at )+ —;
H(1) ( 3) 3 ( 3) c ( 3) (at) T

10
21T

. 2. 1 . 2. 1 . 1 1
V.(t)=sIin(ct + —) +—sIin(3at ——— ) +—sIn(5ct + +—sin(at ) +—
(1) ( 3) 3 ( 3) c ( 3) (at) T

15

0.5

-0.5r

-1.5
0

10

Generalized Zero Sequence Voltages

U@
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6. Application Example

Vo(t) 7
V(1) =

V(1) =

sin(at)

sin(at =225+ L sin(3at + 25y + L sin(Gat - 28
3’ 3 3’5 3

sin(at + 275 L sin(3at =27y + L sin(Gat + 278
3’ 3 3’ 5 3

+%sin(3a1)

+%sin(5a1)

Generalized Direct Sequence Voltages

Fsin(at) +—;
10

)+

)+

15

-1.5
0

|
12

|
14

|
16

|
18

20

10

1 sin(at)+i;
0 10

1 sin(ax)+i;
10 10

U@
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6. Application Example

v, (t)=sin(at)
_sinat -2y L
Vv, (t)=sin(at 3 )+3SI

. 2. 1 .
vV.(t)=sin(at +—)+—sI
(1) ( 3) 3

15

+%sin(3a1)

+
n(3wt+2?ﬂ)+

n(3ax—%”)+

Generalized Inverse

1
— sin(bat
: (Sat )

}-sin(Scut—
5

1sin(5cut+
5

27T

+ L sin(at)+

.|_

10 10

=1

2

+

1 sin(wt)+i;
10 10

=)

Sequence Voltages
T

1 sin(ax)+i;
10 10

0.5F

-0.5F

-1.5
0

- BEOESESEEEN:

| |
12 14

|
16

|
18

20

U@
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6. Application Example

. 1 1 . 1 . 1
V.(t)=sin(at +— sin(3ak + — sin(5at +—sin(at )+ —;
(1) (at) : (St ) c (Sat) 10 (at) 10
. 27T, |1 . 27T 1 . 27T 1 . 1
V.(t)=sIin(et ——— ) +—sin(3at + — )+ —sIn(5at — +—sin(at )+ —;
H(1) ( 3)3 ( 3)5 ( 3)10 ()10

V(1) = sin(at + 2y +E sin@at - 25 L sin(at + 20y + L sin(at )+ —;
37 (3 35 37 10 10

Residual Voltages
15

0.5F

-0.5F

-1.5
0

| | | | | | | |
2 4 6 8 10 12 14 16 18 20

U@



9. Summary - 1l

v An extension of the sequence components in case of
non-sinusoidal periodic operation has been proposed

v" It has been shown that three-phase currents (or
voltages) cannot always be derived from generalized
positive sequence, generalized negative sequence and
generalized zero-sequence components. A residual
component may be required.

v' To compute the generalized positive and negative
seguence components, the zero-sequence components
should first be subtracted from the phase quantitie S, In
contrast with the sinusoidal case where this is not
necessatry.

v" In the sinusoidal case the residual component is ab sent
and the other components reduce to the classical

symmetrical components.
81



9. Summary - 2

v' The generalized positive sequence, negative sequence
and zero-sequence components have complete phase
symmetry. This implies that the three-phase analysi s can
be reduced to a single-phase analysis.

v The residual components do not have the same
symmetry, and the corresponding three  -phase analysis
cannot be reduced to single-phase analysis. It
corresponds to a periodic time function in each of the
three phases with a period which is 1/3 of the line period,;
this simplifies the analysis because only 1/3 of th e period
must be studied.

|
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Derivation of
homopolar
component

s 1
ms

8 10
ms

Bmslﬂ

Voltage
phase a

Voltage
phase b

Homopolar
component

Voltage
phase c

U@
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Derivation of
heteropolar
component

L //k\\ //\\\\1/“\\

Voltage
phase a

4 Voltage

1 phase

1.30 ’ : ’ B e B
7 Voltage

' phase ¢
B T e e R

Opposite of the
homopolar
component

ms 1‘2

Opposite of the

homopolar
component

ms =

OppoSité of the

homopolar
component

ms =

U@
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Voltage
phase a

Derivation of positive
seguence component
(phase a)

Voltage
phase b

Voltage
phase c

L B
L
L
1
|
|
1
| |
| /
~ i
Ly
\/
1.5 L ] L .
10 20 % o = o
ms
|
0+ {
> |
[
-05 + |
|
-
30 60
ms
ol
-05 +
30 20 o
ms

. Positive —
_|sequence component

U@

8 10
ms

~ms,

8 10
ms

=35



Voltage
phase a

Derivation of negative
seguence component
(phase a)

Voltage
phase b

Voltage
phase c

15

T

20

30

ms

L
50

30
ms

8 10
ms

.Negative

_sequence cémponent

- ms

Y
ms

10
ms

-86



Derivation of residual
component (phase a)

L L L L L L L L L
2 4 6 8 10 12 14 16 18 20

8 10
ms

S VAVAV

Residual component

ms

| Obpdsite df the |
| homopolar comp.

U@

8‘ 10
ms

| Oppdsite of the positi\}e

sequence comp. -

8 10
ms

Opposite of the negative
'sequence comp.

187



Seminar Outline

1. Motivation of work
2. Mathematical and physical foundations of the theor
3. Instantaneous and average power & energy terms in

poly-phase networks

. Definition of current and power terms in single-pha
networks under non -sinusoidal conditions

. Extension to poly-phase domain: 3-wires / 4-wires

. Sequence components under non-sinusoidal
conditions

. Measurement & accountability issues (basic
approach)

y

Se

U@
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Measurement & accountability iIssues

U@

v’ Active and reactive current (and power) terms are
affected by the presence of negative-sequence, zero-
sequence and harmonic voltages

v A proper accountability approach must be adopted to
depurate the power and current terms  from the effects
of voltage non-idealities, which are not under load
responsibility

If we assume that the supply voltages are  sinusoidal
and symmetrical with positive sequence , we have:

U,=UP, n=1+3 = U=43UP

uP _ 43U°
—, N=1+3 = U=
W W

U, =

89



U@

Phase current and power terms

v Assuming that the equivalent phase resistance
remains the same irrespective of supply conditions , we
can express the active current and power accountable
to the load in each phase as:

2

U’ 1 | -,
i =GuPl =P =(ub,i, =P — |, =— P
arn n— fn /n < fn afn> n U,f a Ufp ; n
v Similarly, if the equivalent phase reactivity remains the
same irrespective of supply conditions , we can
express the reactive current and power accountable to

the load in each phase are:

U 1 &,
. — R (P —/ap i \N= f ==
Irén - Bnufn :>VV€n _<ufn’|r€n> _Wn Uz Irf U p 21an
n f =




U@

Balanced current and power terms

v' The total power terms accountable to the load are:

.
¢

VAVK2=w 2
Uy Uy

2

3 3
P =Y R =G E W =YW, =B =
=1 =1

v" The balanced current terms accountable to the load
are:

-b 1 Pg - b b~ b 1 W 1 Q
., = I, =BUl = 1| = L= .
\/§U1P -/ (M f 4 \/éufp \/éufp

—al

b,,P b _
Gfgfjlaf_

91



Unbalanced current and power terms

v' The unbalanced active current and power
accountable to the load are :

B 20 = (G, -G Jur,

Iaﬁn arn - Iaﬁn

2
1= 2le-etfur = ST

n=1 f n=1

v' The unbalanced reactive current and power
accountable to the load are :

U@



Void current and power
v' The void currents satisfy the condition:
(uiy)=0 = (uf.i,)+(uf +uf +uyi,)=0

~ o _ Ap . ~N ~ 7 —_ . _
(Gi,)=0 = (@i, )+(a} +af +0,.i,)=0

v" The void current terms which can be accounted
to the load are therefore given by:

v In fact, the fundamental component of the void
current has been already accounted for in the
active and reactive current terms.

93



Currents terms accountable to the load

v' Summary of current decomposition

. . _b -b - U - U .
Flop e Slae Ty g+

-r/  —al o -rf W/

Ly =14

All current terms are orthogonal, thus:

— b2 b2 u2 uz2 2
If _\/Ia€+|r€ +|a€+|r€ +|v€

Apparent power accountable to the load

Af=Ufu=\/P5+Q5+]\I§E+NQ+VX

.
2
Nﬁ

94



Application Examples: 3 -phase 3-wire ®

Case |: Symmetrical sinusoidal voltages

Case II: Asymmetrical sinusoidal voltages
Case lll: Symmetrical non-sisumssdalaleltligee s
Case |IV: Asymmetrical non-sisusmsdal aloltaases

SOURCE LINE PCC LOAD

Case | Case |l
U, = 127100 Vrms U, = 1200 Vrms
U,=1271-120Vrms | U,=1131-104,42Vrms
U, =12/0120°rms | U, = 147,4¢1144°Vrms

cases Ill and IV are the same of
cases | and Il with the addition
of 10% of 5 and 7™ harmonics

i

The line parameters are : R;=R,=R;=1mQand L =L =L ,=L 3=10uH.
95



Application Examples: 3 -phase 3-wire @

Example # 1. Balanced Lazt

CASE | CASE Il CASEIl CXTEIN

PCC LOAD PCC LOAD PCC LOAD PCC LOAD
1,0000 11(mmmp 1,0000 0,9634 1,0000 0,9840 1,0000 0,9538
E 0,7985 @M/BAHEH0,7985 0,7693 0,7913 0,7758 0,7945 0,7556
m 0,602( 0,602( 0,6020 0,580( 0,6023 0,596: 0,6022 0,57/(
0,0000 0,0000 0,0000 0,0000 0,0002 0,0002 0,0056 0,0061
0,0000 0,0000 0,0000 0,0000 0,1054 0,1038 0,0782 0,0760
0,7985 @M)/kH M)/AHED M/D 0,7913 0,7885 0,7945 0,7922

The load is accounted for less active, reactive and void
. power than the PCC
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Application Examples: 3 -phase 3 -wire ®

Example # 2: Distorting loadd

CASE | CASE Il CASEIll CXRSEIN

PCC LOAD PCC LOAD PCC LOAD PCC LOAD
1,0000 1,0009 1,0000 0,9050 1,0000 0,9832 1,0000 0,8973
E 0,82/5 0,8280 0,8841 0,7668 0,8254 0,8098 0,8808 0,7570
E 0,2432 0,2451 0,2135 0,224: 0,2422 0,241. 0,2135 0,223:
0,5060 0,5060 0,4156 0,4250 0,5055 0,4980 0,4185 0,4231
0,0000 0,0000 0,0000 0,0000 0,0674 0,0666 0,0581 0,0566
0,82/5 0,8273 0,8841 0,8473 0,8254 0,8237 0,8808 0,8437

Again the apparent and active power accounted to the
load are always lower than those computed at PCC due
to the depuration of the effects of voltage asymmetry
and distortion

97



Defects of proposed accountability
approach

U@

v’ The equivalent phase conductance and reactivity are
computed by considering the effect of fundamental and
harmonic supply voltages as a whole . In practice, the
load can have different response to fundamental and
harmonic voltages.

v The void currents are not orthogonal  to supply voltages
If these latter become sinusoidal.

v Only the load impedance is modeled, while  supply
Impedance is not estimated and enters the computation
process indirectly, in a way that does not allow to fully
analyze its effect.
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Seminar Outline

1. Motivation of work
2. Mathematical and physical foundations of the theor
3. Instantaneous and average power & energy terms in

poly-phase networks

. Definition of current and power terms in single-pha
networks under non -sinusoidal conditions

. Extension to poly-phase domain: 3-wires / 4-wires

. Sequence components under non-sinusoidal
conditions

. Measurement & accountability issues (extended
approach)

y
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U@
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Extended approach to accountabllity

v Both load and supply are modeled based on
measurements made at PCC

v Load modeling is done under sinusoidal conditions

o0 This makes the load model more reliable, since harm onic effects
are depurated

o Moreover, the harmonic currents generated by the lo ad are
represented separately and their effect can directl  y be accounted
for accountability purposes

v Supply modeling is made for three-phase symmetrical
systems and allows estimation of no-load supply
voltages and line impedances

v’ The extended accountability approach is more reliab le
than the basic one, and possibly avoids under- and o ver-
penalization of the loads.

v Of course, better results can be achieved if a more
accurate modeling of the load is available. 100
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Load modeling (3 -phase 4-wire) - 1

Im

o—
+ ‘ iRm
Up, § R,,

+ iLm

5.

Y

S

Single-phase equivalent
) jm circuit of 3-phase load seen
from PCC

v' The passive parameters of the equivalent circuit ar

e computed to suit

the circuit performance at fundamental frequency;, | e..
i | U f2 U f2
o pf :<u,L,|,I,>: n_ - R,=—01
¢ ur o Oy R P
|y = + = ~ 't R
Ry Ln f ~f o f Un UrImz
Wit = (T, ) = = L=
L m m
v’ With this assumption current  j is purely harmonic In fact:
— f h —~h
i =i Upn um_if_|_ih_um+u U +um_ih um_um
CURL U RL L TRE L,




Load modeling (3 -phase 4 -wire) - 2

m

o—p

‘iRm *ll,m + . .
+ Single-phase equivalent
u,, § R, $ L, (‘) Jm circuit of 3-phase load seen
from PCC

U@

v For the validity of the model we must assume that the
equivalent circuit parameters remain the same withi n
reasonable variations of the voltage supply , both in terms
of asymmetry and distortion.

v This is only approximately true in real networks, b ut it
makes possible an accountability approach based on
measurement at the load terminals , without requiring a
precise knowledge of the load itself.
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Supply modeling (3 -phase 4-wire) - 11 ®

Im
MWW M—p—

— R, L, + Single-phase equivalent circuit
e, (D u, of 3-phase supply seen from
PCC

0

v' The passive parameters of the equivalent circuit ar e the same for all
phases, due to supply lines symmetry. The circuit e guations are:

0 _ .. p b di®

| di e" =u"” +Rgl +Lsd—
e=u+Rgl+Lg— = }]
at e”:u”+RSi”+LSdI

dt

v" Due to its linearity, this equation can be applied separately to the
fundamental positive-sequence voltage and current t erms (index [0)

and the remaining terms (index N), which represent the unwanted
current and voltage components. 103



Supply modeling (3 -phase 4 -wire) - 2 ®

Im
MWW M—p—

— R, L, + Single-phase equivalent circuit
e, (D u, of 3-phase supply seen from
PCC

0

v' The passive parameters of the equivalent circuit ar e selected so as to
minimize the unwanted components of the supply volt ages €', i.e., the

function:
> M
o=[e"]" = 2 (eh ) -
m=1
2 a2 2on”2 di"
=lu"l +R&|[i"] +L + 2R (u"™,i"™+2L(u",L
‘ S S dt s< > S S dt
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Supply modeling (3 -phase 4 -wire) - 3 ®
W mn lﬁ o
R, L

- + Single-phase equivalent circuit
e, (D u, of 3-phase supply seen from
PCC

0

v' The result is expressed as a function of the quanti  ties measured at
PCC in the form:

N
9 L dt

v" Obviously, only positive solutions are acceptable f or Rgand Lg. In
case of negative solution, the corresponding parame teris set to
Zero. 105

dil’

dt




Supply modeling (3 -phase 4 -wire) - 4 ®

Im
MWW M—p—

— R, L, + Single-phase equivalent circuit
e, (D u, of 3-phase supply seen from
PCC

0

v' Given Rg and Lg, we may compute the positive -sequence supply
voltages to be included in the equivalent circuit :

e'O:u'O+RSi'O+LSilo
dt

Note that €, UP, IP are the fundamental positive sequence

components of the related voltages and currents, wh  ile €, u", 1" are
calculated by difference from the original voltages and currents.
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Accountability —— Procedure (1)

Im

o—p

‘iRm *ll,m + . .
+ Single-phase equivalent
u,, § R, g L, C‘) Jm circuit of 3-phase load seen
from PCC

1. From the voltages and currents measured at PCC we  estimate the
phase parameters R, and L. and the current source |, of the
equivalent circuit.

Rm:UrI12 L :Ur;2
f m f
Pm Wm
h ~h
j :ih_um_um
m m RrL L:n
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Accountability —— Procedure (2)

Im
MW M—p—

en®

R Ly

+ Single-phase equivalent circuit
u, of 3-phase supply seen from
PCC

0

2. From the voltages and currents measured at PCC we  estimate the
supply line parameters Rg and Lg and the fundamental positive -

sequence supply voltages €P

Rs

2

‘N
I

(w17

2 s N s N
L= un,dl di
dt dt

0 _..p D di P
e" =u"” +Rgl +LSE
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ol “h ZR, 3L

Accountability —— Procedure (3)

v
Lim

———o- MM >ﬁ
R, L, + VYizm I

" Equivalent circuit for the
computation of fundamental
m voltages at PCC

O @
-

Applying now the positive-sequence supply voltage s at the input
terminals of the equivalent circuit, we may determi ne the
fundamental phase currents Eytasorbed by the loa  d under these
supply conditions and the corresponding fundamental phase
voltages ugappearing at the PCC terminals.

Note that the currents and voltages at PCC may re sult
asymmetrical due to load unbalance. This non-ideali  ty must
obviously be ascribed to the load, since the voltag e supply and
distribution lines are symmetrical
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Accountability —— Procedure (5) b

5. Finally, the load voltages and currents at PCC, w  hich are
accountable to the load are given by:

_f . h
u,=u, +u,

i, =1, +i,

v" We can now compute all power terms accountabletot  he load and
the corresponding performance factors.

Pim = <U£m’i£m> Wim = <G£m’i£m> GimsBimilrasl o

M M
_ _ b b (b Db
P, —prm W, = ZWzm . G, ,By el o
=1 =1 u u
_ — far' Ir
N, =... N, =...

|
JAY,
Vf
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Performance factors

2 2 2 2
- : P-+Q°“+N
v' Distortion factor:  |A\p = 1=V :\/ Q

A2

- N2 ~ P2+Q2
v' Unbalance factor: |[An —\/ - > _\/P2+Q2+N2

2
v' Reactivity factor:  |Ag :\/1_ = Q

P P

=—= =Ag Ay A
QANAD
A \/P2+Q2+N§+NE+D2

v Power factor: A
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Application Examples: 3 -phase 4 -wire ®

Load circuits

R, = 400mQ A. Unbalanced
fa=imH linear load

Ri L Ry = 350mQ |
L; =800uH %

R; = 600mQ
C3 = 5mH |

nonlinear load

$- i
z{ £ 1lr-uo  B.Unbalanced
¥

D O [- 10 oN 0

Line parameters: R ;=R ,=R;=109mQ-L ,=L,,=L ;=38.5puH 112



Application Examples: 3 -phase 4 -wire ®

Supply conditions
Case 1: Symmetrical sinusoidal voltages
Case 2: Symmetrical non-sisimssdalaloltligess

Casel Case 2
e; = 1270 Vrms e; = Case (I)+ ) H; Vrms
e, = 127/7—-120Vrms | e, = Case (I) + )Y, H, Vrms
e; = 127/7120 Vrms e3 = Case (I)+ ). H; Vrms

v' In case 2 the terms called ZH represent the harmonic contents of the
phase voltages.

v Each phase voltage includes 2% of 3 ' harmonic, 2% of 5 ™ harmonic.

v" The phase angle of each harmonic term is the phase angle of the

fundamental voltage (as in Case 1) multiplied by th e harmonic order.
113



Application Examples: 3 -phase 3-wire

Case A: Unbalanced linear load

Caxz Al CaxzA.2

PCC Load PCC Load

A [KVA] 95522 08.722 95.263 96.571
P [KW] 65.224 67.862 65.231 65.089
Q [KVA] 67.698 69.813 67.729 69.597
N [KVA] 15.158 16.334 15.163 15.582
D [KVA] 0.017 0.074 1.627 1.649
A 0.6828 0.6874 0.6847 0.6740

Ao 0.6938 0.6970 0.6937 0.6831
N 0.9872 0.9862 0.9872 0.9869
Ap 1.0000 0.9999 0.9999 0.9999

The load is penalized for its unbalance, especially

in case A.1

(sinusoidal and symmetrical supply voltages)
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Application Examples: 3 -phase 3 -wire

Case B: Unbalanced monlinear load

CaseB.1 CaseB.2
PCC | oad PCC L oad

A [KVA] 93.267 94.007 89.494 91.207
P [KW] 63.909 63.334 62.738 62.763
Q [KVA] 33.274 35.376 33.599 36.159
N [KVA] 20.873 21.143 20.619 21.296
D [KVA] 55.421 55.916 50.190 51.171
A 0.6852 0.6737 0.7010 0.6881

Ao 0.8870 0.8730 0.8815 0.8665

AN 0.9605 0.9601 0.9605 0.9594

Ab 0.8043 0.8039 0.8279 0.8278

The apparent, reactive and unbalance power
accounted to the load are higher than those compute

at PCC
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