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Seminar OutlineSeminar Outline
1. Motivation of work

2. Mathematical and physical foundations of the  theor y
• Mathematical operators and their properties
• Instantaneous and average power & energy terms in p oly-

phase networks

3. Definition of current and power terms in single -phase 
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3. Definition of current and power terms in single -phase 
networks under non-sinusoidal conditions

4. Extension to poly-phase domain: 3-wires / 4-wires

5. Sequence components under non-sinusoidal 
conditions

6. Measurement & accountability issues



� Describe physical phenomena
� energy transfer,
� energy storage,
� rate of utilization of power sources and distributio n 

infrastructure,
� unwanted voltage and current terms, ….    

Allow unambiguous measurement of quantities

1. Motivation of work1. Motivation of work
Why do we need to define power termsWhy do we need to define power terms
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� Allow unambiguous measurement of quantities
� load and source characterization,
� revenue metering, …

� Compensation
� identify provisions which make the equipment or the  

plant compliant with standards & regulations in ter ms 
of symmetry, purity of waveforms, power factor …



While the definition and meaning of instantaneous 
power and its average value ( active power ) are 
universally agreed, the situation is less clear wit h other 
popular power terms 

� What is/means reactive power ?

� What is/means distortion power ?

1. Motivation of work1. Motivation of work
Few basic questionsFew basic questions
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� What is/means distortion power ?

� What is/means apparent power ?

These power terms are unambiguously defined when at  
least the voltage supply is sinusoidal, but are mat ter of 
controversial discussions (since nearly one century ) in 
case of distorted voltages and currents.



�� In the frequency domainIn the frequency domain
�� BudeanuBudeanu (1927)(1927)
�� SheperdSheperd & & ZakikhaniZakikhani (1971)(1971)
�� CzarneckiCzarnecki (1984 …)(1984 …)

�� In the time domainIn the time domain
�� FryzeFryze (1931)(1931)

1. Motivation of work1. Motivation of work
Milestones of power theory historyMilestones of power theory history
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�� KustersKusters & Moore (1975)& Moore (1975)
�� DepenbrockDepenbrock (1993)(1993)
�� AkagiAkagi & & NabaeNabae (1983)(1983)

�� No one of these theories was able to target all goa ls (characterization No one of these theories was able to target all goa ls (characterization 
of physical phenomena, load & line identification, compensation).of physical phenomena, load & line identification, compensation).

�� The timeThe time--domain theory presented here domain theory presented here tries to target all go als at the tries to target all goals at the 
same time.same time.

�� It represents an outcome of It represents an outcome of a longa long--standing cooperation between standing cooperation between 
UNIPD, UNICAMP and UNESP.UNIPD, UNICAMP and UNESP.



� In modern scenarios (e.g., micro-grids) where:
� the grid is weak,
� frequency may change,
� voltages may be asymmetrical,
� distortion may affect voltages and currents,

are the usual definitions of reactive, unbalance an d 
distortion power still valid ?

1. Motivation of work1. Motivation of work
Need for a revision of power termsNeed for a revision of power terms
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distortion power still valid ?

� Which is the physical meaning of such terms ?

� Are they useful for compensation ?

� To which extent are power measurements affected by 
source non-ideality ?

� It is possible to identify supply and load responsi bility 
on  voltage distortion and asymmetry at a given net work 
port ?



Conservative Conservative 
Power TheoryPower Theory

• Definition of mathematical operators and their 

2. 2. Mathematical and physical foundations
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• Definition of mathematical operators and their 
properties

• Definition of instantaneous power and energy terms

• Conservative quantities

• Selection of voltage reference

• Definition of average power terms and their physica l 
meaning in real networks



Let T be the period of variables x and y, we define:

• Average value

• Time derivative

• Time integral

Mathematical operators for periodic Mathematical operators for periodic 
scalar quantitiesscalar quantities
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• Time integral

• Unbiased time integral

• Internal product

• Norm ( rms value )

• Orthogonality
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Let x and y be vector quantities of size N, we define:

• Scalar product

• Magnitude

Mathematical operators for periodic Mathematical operators for periodic 
vector quantitiesvector quantities
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• Internal product

• Norm

• Orthogonality

• The vector norm is also called collective rms value
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The above operators have the following properties:

• Orthogonality

• Equivalences

Properties of mathematical operatorsProperties of mathematical operators
(valid for scalar and vector quantities)(valid for scalar and vector quantities)
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• For sinusoidal quantities

yxyxyx

yxyx

yxyx

yxyxyx

yxyx

yxyx

())(

))

())(

))

,,,

,,

,,

,,,

,,

,,

−=−=

−=

−=

⇒

−=−=
−=
−=

xxxX
()

ω
ω 1===

ϕcos, XYyx = ϕ
ω

senXYyx
1

, =)

2
2

2
2222 2X

x
xxx =+=+

ω
ω

(

)



Instantaneous power definitionsInstantaneous power definitions
(for periodic variables)(for periodic variables)

Instantaneous (active) power: ∑∑ ==⋅=
N

n

N

nn piuiup

Given the vectors of the N phase currents in and voltages 
un measured at a generic network port we define:
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Instantaneous reactive energy
(new definition ):

Instantaneous (active) power: ∑∑
== n

n
n

nn
11

• Both quantities do not depend on the voltage refere nce
• Both quantities are conservative in every real network
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Conservation of instantaneous Conservation of instantaneous 
power  and reactive energypower  and reactive energy

For every real network π, let u and i be the vectors of 
the L branch voltages and currents, we claim that:

� Branch voltages , their time derivative and unbiased 
integral are consistent with network π, i.e. they 
comply with KLV (Kirchhoff’s law for voltages)
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� Branch currents , their time derivative and unbiased 
integral are consistent with network π, i.e. they 
comply with KLC (Kirchhoff’s law for currents)

Thus, according to 
Tellegen’s Theorem all
quantities shown here are
conservative 0

0

0

=⋅=⋅
=⋅=⋅

=⋅=⋅=⋅

iuiu

iuiu

iuiuiu

(
(

)
)

)
(

(
)



Average power definitionsAverage power definitions
(valid for periodic quantities)(valid for periodic quantities)

Reactive energy:

P

iuA

i,ui,uwW

i,upP

=λ

==

−===

==

IU

)
)

Active power:

Apparent power:

Power factor:
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A
=λPower factor:

• All quantities are defined in the time domain.
• Reactive energy is a new definition , whose properties will be 

analyzed in the following.
• Active power and reactive energy are conservative 

quantities which do not depend on the voltage refer ence.
• Unlike P and W, apparent power A is non-conservative and 

depends on the voltage reference . Skip voltage reference



Selection of voltage reference (1)Selection of voltage reference (1)

The equal sign is 
possible if:

1, ≤=⇒≤
A

P
iuiu λCauchy-Schwartz 

inequality:

1, =⇒=⇒∝ λiuiuiu
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We select the voltage reference so as to ensure uni ty 
power factor in case of symmetrical resistive load.  This 
gives a physical meaning to the apparent power , which 
is the maximum active power that a supply line rated 
for Vrms Volts and Irms Amps can deliver to a (purely 
resistive and symmetrical) load .



Selection of voltage reference (2)Selection of voltage reference (2)
NN--phase systems without neutral wirephase systems without neutral wire

Thus, the voltage reference must be selected to com ply 
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The proportionality  condition 
between phase voltages and 
currents for symmetrical resistive 
load determines voltage reference

15

Thus, the voltage reference must be selected to com ply 
with the zero-sum condition:
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This choice minimizes the norm of the voltage vector



Selection of voltage reference (3)Selection of voltage reference (3)
NN--phase systems without neutral wirephase systems without neutral wire
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Measurement of voltages and currents
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Derivation of phase voltages



Selection of voltage reference (4)Selection of voltage reference (4)
NN--phase systems with neutral wirephase systems with neutral wire

Nn,iRuuu nnoref ÷==⇒== 00

In case of symmetrical resistive load the proportio nality  
condition between phase voltages and currents holds  only 
if the voltage reference is set to the neural wire.  
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Unity power factor may occur only if the neutral cu rrent is 
disregarded for apparent power computation (only ph ase 
currents are considered). Thus:
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Selection of voltage reference (5)Selection of voltage reference (5)
NN--phase systems with neutral wirephase systems with neutral wire
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Measurement of voltages and currents
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Resistor
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Power terms in passive networksPower terms in passive networks
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Inductor

Power terms in passive networksPower terms in passive networks
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Power terms in passive networksPower terms in passive networks
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Active and reactive power absorption of a Active and reactive power absorption of a 
linear passive network linear passive network ππππππππ

N resistors

M inductors

K capacitors

L=N+M+K ππππ
Remark: Whichever is 
the origin of reactive 
energy, including 
active and nonlinear 
loads, it can be 
compensated by 
reactive elements
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Total active power and reactive energy

K capacitors
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Seminar OutlineSeminar Outline
1. Motivation of work

2. Mathematical and physical foundations of the  theor y
• Mathematical operators and their properties
• Instantaneous and average power & energy terms in p oly-

phase networks

3. Definition of current and power terms in single -phase 
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3. Definition of current and power terms in single -phase 
networks under non-sinusoidal conditions

4. Extension to poly-phase domain: 3-wires / 4-wires

5. Sequence components under non-sinusoidal 
conditions

6. Measurement & accountability issues



Conservative Conservative 
Power TheoryPower Theory

3. Definition of current and power terms in 
single -phase networks under non -

sinusoidal conditions
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• Orthogonal current decomposition into active, react ive 
and void terms

• Physical meaning of current terms
• Apparent power decomposition into active, reactive and 

void terms
• Physical meaning of power terms
• Application examples

sinusoidal conditions



� Current terms

Orthogonal current decomposition in Orthogonal current decomposition in 
singlesingle --phase networksphase networks

(voltage and current measured at a generic network port)(voltage and current measured at a generic network port)

43421

vi

gsrsaravra iiiiiiiii ++++=++=
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• ia active current
• ir reactive current
• iv void current

222222222

gsrsaravra iiiiiiiii ++++=++=

�� OrthogonalityOrthogonality : all  terms in the above equations are orthogonal: all  terms in the above equations are orthogonal

• isa scattered active current
• isr scattered reactive current
• ig generated current



� Active current : the minimum current (i.e., with minimum
rms value) needed to convey the active power P flowing
through the port

u = port voltage
Piu,

Orthogonal current decomposition in Orthogonal current decomposition in 
singlesingle --phase networksphase networks

(voltage and current measured at a generic network port)(voltage and current measured at a generic network port)
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U = rms value of port voltage

Ge = equivalent conductance
uGu

U

P
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Active current conveys full 
active power and zero 
reactive energy



� Reactive current : the minimum current needed to 
convey the reactive energy W flowing through the port

Be = equivalent  reactivity

Orthogonal current decomposition in Orthogonal current decomposition in 
singlesingle --phase networksphase networks

(voltage and current measured at a generic network port)(voltage and current measured at a generic network port)
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Be = equivalent  reactivity
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reactive energy and no active 
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� Void current : is the remaining current component

rav iiii −−=

Orthogonal current decomposition in Orthogonal current decomposition in 
singlesingle --phase networksphase networks

(voltage and current measured at a generic network port)(voltage and current measured at a generic network port)

Void current is not conveying active power or react ive energy 
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Void current is orthogonal to active and reactive t erms

Void current is not conveying active power or react ive energy 



gsrsav iiii ++=

The void current reflects the presence of scattered active , 
scattered reactive and load-generated harmonic terms

Orthogonal current decomposition in Orthogonal current decomposition in 
singlesingle --phase networksphase networks

(voltage and current measured at a generic network port)(voltage and current measured at a generic network port)
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gsrsav

Scattered current terms :
Account for different values of 

equivalent admittance at 
different harmonics

Load-generated current 
harmonics :

Harmonic terms that exist in 
currents only,  not in voltages 

0,,, === gsrgsasrsa iiiiii
Scattered and  load-generated 
harmonic currents are 
orthogonal

Skip void current components



ForFor eacheach coco--existingexisting harmonicharmonic componentscomponents ofof voltagevoltage
andand currentcurrent wewe definedefine::

�� Harmonic active current termsHarmonic active current terms

kkkkk uGu
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u
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u
iu

i ==== ϕcos,

Scattered active currentScattered active current

Orthogonal current decomposition in Orthogonal current decomposition in 
singlesingle --phase networksphase networks

30

kkk
k

kk
k

k

k
k

k

kk
ak uGu

U

I
u

U

P
u

u

iu
i ==== ϕcos,

22

0, ==== ∑
∈

haa
Kk

kha WPPPP

( )∑
∈

−=−=
Kk

kekahasa uGGiii 0,0 ==−= saahasa WPPP

∑
∈

=
Kk

akha ii
�� Total harmonic active currentTotal harmonic active current

�� Scattered active currentScattered active current



Scattered reactive currentScattered reactive current

ForFor eacheach coco--existingexisting harmonicharmonic componentscomponents ofof voltagevoltage
andand currentcurrent wewe definedefine::

�� HarmonicHarmonic reactivereactive currentcurrent termsterms
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Orthogonal current decomposition in Orthogonal current decomposition in 
singlesingle --phase networksphase networks
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�� Total harmonic reactive currentTotal harmonic reactive current

�� Scattered reactive currentScattered reactive current



aa IUiuP ==
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Apparent power decomposition Apparent power decomposition in in 
singlesingle --phase networksphase networks

222 VQPIUiuA ++===

� Active power:

� Reactive power:
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� Scattered active power:

� Scattered reactive power:

� Load-generated  harmonic 
power:

rr IUiuQ ==

222
gravv VSSIUiuV ++===

srsrr IUiuS ==

sasaa IUiuS ==

ggg IUiuV ==

� Reactive power:

� Void power:



Reactive PowerReactive Power

( )[ ]222 1 uTHDUUUU fhf +=+=
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U and Û can be decomposed in 
fundamental and harmonic 
components
(THD means total harmonic distortion)

Recalling that:
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Note that, unlike reactive energy W, REACTIVE POWER Q
IS NOT CONSERVATIVE. In fact, it depends on line 
frequency and (local) voltage distortion.

Under sinusoidal conditions, the definition of Q 
coincides with the conventional one
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Void Power Terms Void Power Terms 

�� Scattered active power:Scattered active power:
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Skip examples



Application ExamplesApplication Examples

Example Example ######## 11
VoltageVoltage andand CurrentCurrent : : ResistiveResistive LoadLoad
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Sinusoidal voltageSinusoidal voltage Non Non –– sinusoidal voltagesinusoidal voltage
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Application ExamplesApplication Examples
Example Example ######## 11

ConservativeConservative Power Power TermsTerms: : ResistiveResistive LoadLoad
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Sinusoidal voltageSinusoidal voltage Non Non –– sinusoidal voltagesinusoidal voltage

This example shows the This example shows the correspondencescorrespondences between the between the 
CPTCPT theorytheory and and conventional theoryconventional theory
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Application ExamplesApplication Examples
Example Example ######## 1 1 –– SingleSingle--phasephase

CurrentCurrent TermsTerms: : ResistiveResistive LoadLoad
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Application ExamplesApplication Examples
Example Example ######## 22

VoltageVoltage andand CurrentCurrent : : OhmicOhmic--inductive Loadinductive Load
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Application ExamplesApplication Examples
Example Example ######## 22

ConservativeConservative Power Power TermsTerms: : OhmicOhmic--inductive Loadinductive Load
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Application ExamplesApplication Examples
Example Example ######## 22

CurrentCurrent TermsTerms: : OhmicOhmic--inductive Loadinductive Load
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Physical meaning of void currentPhysical meaning of void current
Example Example ######## 22

VoidVoid CurrentCurrent TermsTerms: : OhmicOhmic--inductive Loadinductive Load
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Non Non –– sinusoidal voltagesinusoidal voltage
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Application ExamplesApplication Examples
Example Example ######## 33

VoltageVoltage andand CurrentCurrent
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Non Non –– sinusoidal voltagesinusoidal voltage
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Physical meaning of void currentPhysical meaning of void current
VoidVoid CurrentCurrent TermsTerms: : OhmicOhmic--inductive Loadinductive Load
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Non Non –– sinusoidal voltagesinusoidal voltage

Void current

Reactive current
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Physical meaning of void currentPhysical meaning of void current
VoidVoid CurrentCurrent TermsTerms: : OhmicOhmic--inductive Loadinductive Load
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Non Non –– sinusoidal voltagesinusoidal voltage

Load-generated 
harmonic current

Scattered reactive current
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Seminar OutlineSeminar Outline
1. Motivation of work

2. Mathematical and physical foundations of the  theor y
• Mathematical operators and their properties
• Instantaneous and average power & energy terms in p oly-

phase networks

3. Definition of current and power terms in single -phase 
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3. Definition of current and power terms in single -phase 
networks under non-sinusoidal conditions

4. Extension to poly-phase domain: 3-wires / 4-wires

5. Sequence components under non-sinusoidal 
conditions

6. Measurement & accountability issues



Conservative Conservative 
Power TheoryPower Theory

4. Extension to poly -phase domain: 
3-wires / 4 -wires

46

• Orthogonal current decomposition into active, react ive, 
unbalance and void terms

• Physical meaning of current terms
• Active power decomposition into active, reactive, 

unbalance and void terms
• Physical meaning of power terms



Orthogonal current decomposition Orthogonal current decomposition 
Extension to polyExtension to poly --phase: 3phase: 3 --wires / 4wires / 4 --wireswires

In poly-phase systems, the current components (active, 
reactive and void) can be defined  for each phase:
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G = equivalent phase conductance

47

� Reactive current

� Void current
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Active and reactive current terms can also be defin ed 
collectively, i.e., by making reference to an equivalent 
balanced load absorbing the same active power and 
reactive energy of actual load:

� Balanced Active currents: minimum collective 
currents needed to convey active power P

Orthogonal current decomposition Orthogonal current decomposition 
Extension to polyExtension to poly --phase: 3phase: 3 --wires / 4wires / 4 --wireswires

48

currents needed to convey active power P

�� Balanced Reactive currents: Balanced Reactive currents: minimum collective 
currents needed to convey reactive energy W
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Orthogonal current decomposition Orthogonal current decomposition 
Extension to polyExtension to poly --phase: 3phase: 3 --wires / 4wires / 4 --wireswires

�� UnbalancedUnbalanced ActiveActive currentscurrents

Unbalanced currentsUnbalanced currents account for the asymmetrical account for the asymmetrical 
behavior of the various phasesbehavior of the various phases

( ) NnuGGiiii n
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u
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u
a PPP
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�� UnbalancedUnbalanced ReactiveReactive currentscurrents
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Orthogonal current decomposition Orthogonal current decomposition 
Extension to polyExtension to poly --phase: 3phase: 3 --wires / 4wires / 4 --wireswires

� Void currents: as for single-phase systems, they 
reflect the presence of scattered active, scattered  
reactive and generated terms.

g
s
r

s
arav iiiiiii ++=−−=
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0

0

=−−=
=−−=

rav

rav

WWWW

PPPP

Scattered current terms :
Account for different values of 

equivalent admittance at 
different harmonics

Load-generated harmonic 
current :

Harmonic terms that exist in 
currents only,  not in voltages



Orthogonal current decomposition Orthogonal current decomposition 
Extension to polyExtension to poly --phase: 3phase: 3 --wires / 4wires / 4 --wireswires

� Summary of current decomposition

� i a active currents
• i a

b balanced active currents

g
s
r

s
a

u
r

b
r

u
a

b
avra iiiiiiiiiii ++++++=++=
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• i a balanced active currents
• i a

u unbalanced active currents
� i r reactive currents

• i r
b balanced reactive currents

• i r
u unbalanced reactive currents

� i v void currents
• i a

s scattered active currents
• i r

s scattered reactive currents
• i g load-generated harmonic currents



Orthogonal current decomposition Orthogonal current decomposition 
Extension to polyExtension to poly --phase: 3phase: 3 --wires / 4wires / 4 --wireswires

43421
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�� Summary of current decompositionSummary of current decomposition

Each current component has a preciseEach current component has a precise
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Moreover, all  current terms defined in the above e quation Moreover, all  current terms defined in the above e quation 
are are ORTHOGONALORTHOGONAL, thus:, thus:
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Each current component has a preciseEach current component has a precise
PHISICAL MEANING PHISICAL MEANING and is computed in the time domainand is computed in the time domain



Apparent power decomposition Apparent power decomposition in in 
polypoly --phase: 3phase: 3 --wires / 4wires / 4 --wireswires

2222 VNQPiuA +++=== IU

Active power:Active power: b
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b
a iuP == IU
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Reactive power:Reactive power:

UnbalanceUnbalance powerpower::

Void power:Void power:

b
r

b
r iuQ == IU
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u NNiuN +=== uIU



UnbalanceUnbalance Power TermsPower Terms

UnbalanceUnbalance powerpower::

� Unbalance Active Power
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� Unbalance Reactive Power
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Skip examples



Application ExamplesApplication Examples

Example Example ######## 1 1 : 3: 3--phase 3phase 3--wire wire –– BalancedBalanced load load 
(Resistive)
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Application ExamplesApplication Examples

Balanced active currents

Balanced reactive currents
i r (t)= 0

Example Example ######## 1 1 : 3: 3--phase 3phase 3--wire wire –– BalancedBalanced load load 
(Resistive)
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Application ExamplesApplication Examples
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ConservativeConservative Power Power TermsTerms

Example Example ######## 1 1 : 3: 3--phase 3phase 3--wire wire –– UnbalancedUnbalanced load load 
(resistor connected between two phases)
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Application ExamplesApplication Examples
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Example Example ######## 1 1 : 3: 3--phase 3phase 3--wire wire –– UnbalancedUnbalanced load load 
(resistor connected between two phases)

Balanced active currents

Balanced reactive currents
i r (t)= 0
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Application ExamplesApplication Examples

Example Example ######## 3 3 : 3: 3--phase 3phase 3--wirewire
ThreeThree--phase RL + Singlephase RL + Single--phase R loadphase R load
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Application ExamplesApplication Examples
Example Example ######## 3 3 : 3: 3--phase 3phase 3--wirewire

ThreeThree--phasephase RL + RL + SingleSingle--phasephase R loadR load
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�� Orthogonal current Orthogonal current termsterms ::
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vra i
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Each current component has Each current component has 

Sharing of compensation dutiesSharing of compensation duties

61

Each current component has Each current component has 
a precise a precise PHYSICAL MEANINGPHYSICAL MEANING

�� Balanced Active currents Balanced Active currents convey active power Pconvey active power P

�� Balanced Reactive currents Balanced Reactive currents convey reactive power Q

�� Unbalanced Active and Reactive currents Unbalanced Active and Reactive currents account for account for 
asymmetrical behavior of the various phasesasymmetrical behavior of the various phases

�� Void currents Void currents reflect the presence of different behavior at reflect the presence of different behavior at 
different different frequencies and/or generated frequencies and/or generated current harmonicscurrent harmonics



i = i a + i r + i v = i a
b + i r

b + i a
u + i r

u + i v

Reactive 
compensation

Unbalance 
compensation 

requires controllable 
Harmonic 

compensation 

Sharing of compensation dutiesSharing of compensation duties

62

compensation requires controllable 
reactances (extended 
Steinmetz approach)

compensation 
requires high-

frequency response

Passive filters & 
Switching Power 
Compensators
(SPC=APF+SPI)

Quasi-
Stactionary 

Compensators 
(SVC)

Stationary Compensators 
(reactive impedances) 

&
Quasi-Stationary 

Compensators (SVC, 
Static VAR Compensators)



Effect of compensation on Effect of compensation on 
power termspower terms

Active power (balanced)Active power (balanced) ::

Reactive power (balanced)Reactive power (balanced) ::

Unbalance powerUnbalance power ::

b
aP IU=

b
rQ IU

)

=

22 uuuN IIUIU +==

0 →SVC

0 →SVC

Compensation
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APPARENT APPARENT POWERPOWER

2222 VNQPA +++== IU

Unbalance powerUnbalance power ::

Void powerVoid power ::
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Seminar OutlineSeminar Outline
1. Motivation of work

2. Mathematical and physical foundations of the  theor y
• Mathematical operators and their properties
• Instantaneous and average power & energy terms in p oly-

phase networks

3. Definition of current and power terms in single -phase 
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3. Definition of current and power terms in single -phase 
networks under non-sinusoidal conditions

4. Extension to poly-phase domain: 3-wires / 4-wires

5. Sequence components under non-sinusoidal 
conditions

6. Measurement & accountability issues



Conservative Conservative 
Power TheoryPower Theory

5. 5. Sequence components under non -
sinusoidal conditions
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1. Problem statement
2. Goal of decomposition
3. Derivation of generalized symmetrical components in 

the time domain (extension of Fortescue’s approach)
4. Analysis of generalized symmetrical components in 

the frequency domain
5. Orthogonality of sequence components
6. Application examples

Skip



�Symmetrical components are very useful to 
simplify the analysis of three-phase networks 
under sinusoidal conditions

11. . Problem Problem statement (1)statement (1)
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� It is important to extend the definition and 
application of symmetrical components to 
non -sinusoidal periodic operation



11. . Problem Problem statement (2)statement (2)
� Given periodic three-phase variables fa(t), fb(t), fc(t) of 

period T we define the following symmetry 
properties :

� Homopolarity (zero symmetry)

( ) ( ) ( )tftftf cba ==

67

� Positive (direct) symmetry

� Negative (inverse) symmetry
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2. 2. Goal of decompositionGoal of decomposition

� Given a set of generic three-phase variables:

we decompose them in the orthogonal form:

( )
( )
( )tf

tf

tf

f

c

b

a

=

68

where:
� f z are zero-sequence (homopolar) components
� f h are non-zero sequence (heteropolar) components
� f p are positive-sequence components
� f n are negative-sequence components
� f r are residual components
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3. Derivation of generalized 3. Derivation of generalized 
symmetrical componentssymmetrical components

� Zero sequence (homopolar) component
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� Heteropolar components
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3. Derivation of generalized 3. Derivation of generalized 
symmetrical componentssymmetrical components

� Positive sequence component
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� Negative sequence component
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3. Derivation of generalized 3. Derivation of generalized 
symmetrical componentssymmetrical components

� Residual components

( )

( )

( ) 2
3

3
2

3










 −+






 −+

TT

T
tf

T
tftf

hhh

h
a

h
a

h
a

r

71

( )
( )
( )

( )

( )
3

3
2

3

3

3
2

3








 −+






 −+








 −+






 −+
==

T
tf

T
tftf

T
tf

T
tftf

tf

tf

tf

f

h
c

h
c

h
c

h
b

h
b

h
b

r
c

r
b

r
a

r

� Note: these components are computed independently 
for each phase and vanish in sinusoidal operation



3. Derivation of generalized 3. Derivation of generalized 
symmetrical componentssymmetrical components

� Resulting decomposition
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4. Analysis in the frequency domain4. Analysis in the frequency domain

Expressing variables fa(t), fb(t), fc(t) in Fourier series:
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we can determine, for each harmonic, the zero, posit ive, 
and negative components f zk(t), f pk(t), f nk(t). Instead, 
residual harmonic components are zero because 
harmonic quantities are sinusoidal.
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Contribution of harmonic sequence components to 
generalized sequence components
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4. Analysis in the frequency domain4. Analysis in the frequency domain
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5. Orthogonality of components5. Orthogonality of components

Given two sets of three-phase quantities f and g, 
their sequence components obey the following 
general rules:

� Scalar product
0==== rznzpzhz gfgfgfgf oooo
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� Internal product

� Norm
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6. Application Example6. Application Example

Line to Neutral Voltages
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Generalized Zero Sequence Voltages
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6. Application Example6. Application Example
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Generalized Direct Sequence Voltages
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Generalized Inverse Sequence Voltages
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Residual Voltages
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9. 9. Summary Summary -- 11

� An extension of the sequence components in case of 
non-sinusoidal periodic operation has been proposed .

� It has been shown that three-phase currents (or 
voltages) cannot always be derived from generalized 
positive sequence, generalized negative sequence and  
generalized zero-sequence components. A residual 
component may be required.

81

component may be required.
� To compute the generalized positive and negative 

sequence components, the zero-sequence components 
should first be subtracted from the phase quantitie s, in 
contrast with the sinusoidal case where this is not  
necessary.

� In the sinusoidal case the residual component is ab sent 
and the other components reduce to the classical 
symmetrical components.



� The generalized positive sequence, negative sequence , 
and zero-sequence components have complete phase 
symmetry. This implies that the three-phase analysi s can 
be reduced to a single-phase analysis.

� The residual components do not have the same 
symmetry, and the corresponding three -phase analysis 

9. Summary 9. Summary -- 22

82

symmetry, and the corresponding three -phase analysis 
cannot be reduced to single-phase analysis. It 
corresponds to a periodic time function in each of the 
three phases with a period which is 1/3 of the line  period; 
this simplifies the analysis because only 1/3 of th e period 
must be studied.
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Derivation of residual 
component (phase a)
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Seminar OutlineSeminar Outline
1. Motivation of work

2. Mathematical and physical foundations of the  theor y

3. Instantaneous and average power & energy terms in 
poly-phase networks

4. Definition of current and power terms in single-pha se 
networks under non -sinusoidal conditions

88

networks under non -sinusoidal conditions

5. Extension to poly-phase domain: 3-wires / 4-wires

6. Sequence components under non-sinusoidal 
conditions

7. Measurement & accountability issues (basic 
approach)



Measurement & accountability issuesMeasurement & accountability issues

�Active and reactive current (and power) terms are 
affected by the presence of negative-sequence, zero-
sequence and harmonic voltages

�A proper accountability approach must be adopted to 
depurate the power and current terms from the effects 
of voltage non-idealities, which are not under load  
responsibility

89

responsibility
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If we assume that the supply voltages are sinusoidal 
and symmetrical with positive sequence , we have:



� Assuming that the equivalent phase resistance
remains the same irrespective of supply conditions , we
can express the active current and power accountable
to the load in each phase as:

Phase current and power termsPhase current and power terms
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� Similarly, if the equivalent phase reactivity remains the
same irrespective of supply conditions , we can
express the reactive current and power accountable to
the load in each phase are:
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� The total power terms accountable to the load are:

Balanced current and power termsBalanced current and power terms
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� The balanced current terms accountable to the load
are:
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� The unbalanced active current and power 
accountable to the load are :

Unbalanced current and power termsUnbalanced current and power terms
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� The unbalanced reactive current and power 
accountable to the load are :
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Void current and powerVoid current and power

� The void currents satisfy the condition:
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� The void current terms which can be accounted
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� The void current terms which can be accounted
to the load are therefore given by:
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� In fact, the fundamental component of the void
current has been already accounted for in the
active and reactive current terms.



Currents terms accountable to the loadCurrents terms accountable to the load
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All current terms are orthogonal, thus:All current terms are orthogonal, thus:

�� Summary of current decomposition Summary of current decomposition 
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Case I: Symmetrical sinusoidal voltagesCase I: Symmetrical sinusoidal voltages
Case II: Asymmetrical sinusoidal voltagesCase II: Asymmetrical sinusoidal voltages

Case III: Symmetrical nonCase III: Symmetrical non--sinusoidal voltagessinusoidal voltages
Case IV: Asymmetrical nonCase IV: Asymmetrical non--sinusoidal voltagessinusoidal voltages

Application Examples: 3Application Examples: 3 --phase 3phase 3 --wirewire

Case I Case II 
U1 = 127∠∠∠∠0º Vrms U1 = 127∠∠∠∠0º Vrms

U2 = 127∠∠∠∠-120º Vrms U2 = 113∠∠∠∠-104,4º Vrms
U3 = 127∠∠∠∠120º Vrms U3 = 147,49∠∠∠∠144º Vrms

95

BalancedBalanced LoadLoad

L3

L2

L1

i3

i1

u21

u32

3

2

1

uSn

LLnRLn

LOADPCCLINESOURCE

n {1,2,3}

R C

Distorting LoadDistorting Load

U3 = 127∠∠∠∠120º Vrms U3 = 147,49∠∠∠∠144º Vrms

cases III and IV are the same of 
cases I and II with the addition 
of 10% of 5 th and 7 th harmonics 

The line parameters are : RL1= RL2= RL3= 1mΩΩΩΩ and LL0 = LL1= LL2= LL3= 10 µµµµH.



CASE ICASE I CASE IICASE II CASE IIICASE III CASE IVCASE IV

PCCPCC LOADLOAD PCCPCC LOADLOAD PCCPCC LOADLOAD PCCPCC LOADLOAD

AA 1,00001,0000 1,00001,0000 1,0000 0,96340,9634 1,0000 0,98400,9840 1,0000 0,95380,9538

PP 0,79850,7985 0,79850,7985 0,7985 0,76930,7693 0,7913 0,77580,7758 0,7945 0,75560,7556

QQ 0,60200,6020 0,60200,6020 0,6020 0,58000,5800 0,6023 0,59620,5962 0,6022 0,57700,5770

Application Examples: 3Application Examples: 3 --phase 3phase 3 --wirewire

Example Example ######## 1: 1: BalancedBalanced LoadLoad
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QQ 0,60200,6020 0,60200,6020 0,6020 0,58000,5800 0,6023 0,59620,5962 0,6022 0,57700,5770

NN 0,0000 0,0000 0,0000 0,0000 0,0002 0,00020,0002 0,0056 0,00610,0061

VV 0,0000 0,0000 0,0000 0,0000 0,1054 0,10380,1038 0,0782 0,07600,0760

λλλλλλλλ 0,79850,7985 0,79850,7985 0,79850,7985 0,79850,7985 0,7913 0,7885 0,7945 0,7922

The load is accounted for less active, reactive and  void
power than the PCC



CASE ICASE I CASE IICASE II CASE IIICASE III CASE IVCASE IV

PCCPCC LOADLOAD PCCPCC LOADLOAD PCCPCC LOADLOAD PCCPCC LOADLOAD

AA 1,0000 1,0009 1,0000 0,9050 1,0000 0,98320,9832 1,0000 0,8973

PP 0,8275 0,8280 0,8841 0,7668 0,8254 0,80980,8098 0,8808 0,7570

QQ 0,2432 0,2451 0,2135 0,22450,2245 0,2422 0,24170,2417 0,2135 0,22320,2232

Example Example ######## 2: 2: Distorting lDistorting loadoad

Application Examples: 3Application Examples: 3 --phase 3phase 3 --wirewire
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QQ 0,2432 0,2451 0,2135 0,22450,2245 0,2422 0,24170,2417 0,2135 0,22320,2232

NN 0,5060 0,5060 0,4156 0,42500,4250 0,5055 0,49800,4980 0,4185 0,42310,4231

VV 0,0000 0,0000 0,0000 0,0000 0,0674 0,06660,0666 0,0581 0,0566

λλλλλλλλ 0,8275 0,8273 0,8841 0,8473 0,8254 0,8237 0,8808 0,8437

Again the apparent and active power accounted to the
load are always lower than those computed at PCC due
to the depuration of the effects of voltage asymmetry
and distortion



Defects of proposed accountability Defects of proposed accountability 
approachapproach

��The equivalent phase conductance and reactivity are  The equivalent phase conductance and reactivity are  
computed by computed by considering the effect of fundamental and considering the effect of fundamental and 
harmonic supply voltages as a wholeharmonic supply voltages as a whole . In practice, the . In practice, the 
load can have different response to fundamental and  load can have different response to fundamental and  
harmonic voltages.harmonic voltages.
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harmonic voltages.harmonic voltages.

��The The void currents are not orthogonal void currents are not orthogonal to supply voltages to supply voltages 
if these latter become sinusoidal.if these latter become sinusoidal.

��Only the load impedance is modeled, while Only the load impedance is modeled, while supply supply 
impedance is not estimatedimpedance is not estimated and enters the computation and enters the computation 
process indirectly, in a way that does not allow to  fully process indirectly, in a way that does not allow to  fully 
analyze its effect.analyze its effect.



Seminar OutlineSeminar Outline
1. Motivation of work

2. Mathematical and physical foundations of the  theor y

3. Instantaneous and average power & energy terms in 
poly-phase networks

4. Definition of current and power terms in single-pha se 
networks under non -sinusoidal conditions
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networks under non -sinusoidal conditions

5. Extension to poly-phase domain: 3-wires / 4-wires

6. Sequence components under non-sinusoidal 
conditions

7. Measurement & accountability issues (extended 
approach)



Extended approach to accountabilityExtended approach to accountability
�Both load and supply are modeled based on 

measurements made at PCC
�Load modeling is done under sinusoidal conditions

o This makes the load model more reliable, since harm onic effects 
are depurated

o Moreover, the harmonic currents generated by the lo ad are 
represented separately and their effect can directl y be accounted 
for accountability purposes
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for accountability purposes

�Supply modeling is made for three-phase symmetrical  
systems and allows estimation of no-load supply 
voltages and line impedances

�The extended accountability approach is more reliab le 
than the basic one, and possibly avoids under- and o ver-
penalization of the loads.

�Of course, better results can be achieved if a more  
accurate modeling of the load is available.



� The passive parameters of the equivalent circuit ar e computed to suit 
the circuit performance at fundamental frequency, i .e.: 

Load modeling (3Load modeling (3 --phase 4phase 4 --wire) wire) -- 11

Single-phase  equivalent 
circuit of 3-phase load seen 
from PCC
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the circuit performance at fundamental frequency, i .e.: 
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� With this assumption current jm is purely harmonic. In fact:
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� For the validity of the model we must assume that the 
equivalent circuit parameters remain the same withi n 

Load modeling (3Load modeling (3 --phase 4phase 4 --wire) wire) -- 22

Single-phase  equivalent 
circuit of 3-phase load seen 
from PCC
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equivalent circuit parameters remain the same withi n 
reasonable variations of the voltage supply , both in terms 
of asymmetry and distortion.

� This is only approximately true in real networks, b ut it 
makes possible an accountability approach based on 
measurement at the load terminals , without requiring a 
precise knowledge of the load itself.



� The passive parameters of the equivalent circuit ar e the same for all 
phases, due to supply lines symmetry. The circuit e quations are: 

Supply modeling (3Supply modeling (3 --phase 4phase 4 --wire) wire) -- 11

Single-phase  equivalent circuit 
of 3-phase supply seen from 
PCC

103

phases, due to supply lines symmetry. The circuit e quations are: 

dt

d
LR SS

i
iue ++=

� Due to  its linearity, this equation can be applied  separately to the 
fundamental positive-sequence voltage and current t erms  (index p)
and the remaining terms (index n), which represent the unwanted 
current and voltage components.
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� The passive parameters of the equivalent circuit ar e selected so as to 

Supply modeling (3Supply modeling (3 --phase 4phase 4 --wire) wire) -- 22

Single-phase  equivalent circuit 
of 3-phase supply seen from 
PCC
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� The passive parameters of the equivalent circuit ar e selected so as to 
minimize the unwanted components of the supply volt ages en, i.e., the 
function: 
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� The result is expressed as a function of the quanti ties measured at 
PCC in the form:

Supply modeling (3Supply modeling (3 --phase 4phase 4 --wire) wire) -- 33

Single-phase  equivalent circuit 
of 3-phase supply seen from 
PCC
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PCC in the form:
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� Obviously, only positive solutions are acceptable f or RS and LS. In 
case of negative solution, the corresponding parame ter is set to 
zero.



� Given RS and LS, we may compute the positive -sequence supply 

Supply modeling (3Supply modeling (3 --phase 4phase 4 --wire) wire) -- 44

Single-phase  equivalent circuit 
of 3-phase supply seen from 
PCC
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� Given RS and LS, we may compute the positive -sequence supply 
voltages to be included in the equivalent circuit :

dt

d
LR

p

S
p

S
pp i

iue ++=

Note that ep, up, ip are the fundamental positive sequence 
components of the related voltages and currents, wh ile en, un, in are 
calculated by difference from the original voltages  and currents.



1. From the voltages and currents measured at PCC we  estimate the 
phase parameters R and L and the current source j of the 

Accountability Accountability – – Procedure (1)Procedure (1)

Single-phase  equivalent 
circuit of 3-phase load seen 
from PCC
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phase parameters Rm and Lm and the current source jm of the 
equivalent circuit.
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Accountability Accountability – – Procedure (2)Procedure (2)

Single-phase  equivalent circuit 
of 3-phase supply seen from 
PCC

2. From the voltages and currents measured at PCC we  estimate the 
supply line parameters R and L and the fundamental positive -

108

supply line parameters RS and LS and the fundamental positive -
sequence supply voltages ep
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Accountability Accountability – – Procedure (3)Procedure (3)

Equivalent circuit for the 
computation of fundamental 
voltages at PCC

4. Applying now the positive-sequence supply voltage s at the input 
terminals of the equivalent circuit, we may determi ne the 
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terminals of the equivalent circuit, we may determi ne the 
fundamental phase currents      absorbed by the loa d under these 
supply conditions and the corresponding fundamental  phase 
voltages       appearing at the PCC terminals.

� Note that the currents  and voltages at PCC  may re sult 
asymmetrical due to load unbalance. This non-ideali ty must 
obviously be ascribed to the load, since the voltag e supply and 
distribution lines are symmetrical
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Accountability Accountability – – Procedure (5)Procedure (5)

5. Finally, the load voltages and currents at PCC, w hich are 
accountable to the load are given by:

� We can now compute all power terms accountable to t he load and 
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� We can now compute all power terms accountable to t he load and 
the corresponding performance factors.
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� Distortion factor:

Performance factorsPerformance factors
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� Reactivity factor: 22
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Load circuitsLoad circuits

Application Examples: 3Application Examples: 3 --phase 4phase 4 --wirewire

A. Unbalanced 
linear load

112Line parameters: R L1= RL2= RL3= 10.9 mΩΩΩΩ - LL1= LL2= LL3= 38.5 µµµµH

B. Unbalanced 
nonlinear load



Supply conditionsSupply conditions
Case 1: Symmetrical sinusoidal voltagesCase 1: Symmetrical sinusoidal voltages

Case 2: Symmetrical nonCase 2: Symmetrical non--sinusoidal voltagessinusoidal voltages

Application Examples: 3Application Examples: 3 --phase 4phase 4 --wirewire

Case 1 Case 2 
�1  =  127∠0 Vrms �1  =  �	
� ��
 + ∑ �1 Vrms 
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�1  =  127∠0 Vrms �1  =  �	
� ��
 + ∑ �1 Vrms 
 �2  =  127∠ − 120 Vrms  �2  =  �	
� ��
 + ∑ �2 Vrms 

 �3  =  127∠120 Vrms  �3  =  �	
� ��
 + ∑ �3 Vrms 

 

� In case 2 the terms called ΣΣΣΣH represent the harmonic contents of the 
phase voltages.

� Each phase voltage includes 2% of 3 rd harmonic, 2% of 5 th harmonic.

� The phase angle of each harmonic term is the phase angle of the 
fundamental voltage (as in Case 1) multiplied by th e harmonic order.



Application Examples: 3Application Examples: 3 --phase 3phase 3 --wirewire

Case ACase A: : UnbUnbalanced linear loadalanced linear load

 Case A.1 Case A.2 
 PCC Load PCC Load 

A [KVA]  95.522 98.722 95.263 96.571 
P [KW]  65.224 67.862 65.231 65.089 

Q [KVA]  67.698 69.813 67.729 69.597 
N [KVA]  15.158 16.334 15.163 15.582 
D [KVA]  0.017 0.074 1.627 1.649 
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The load is penalized for its unbalance, especially  in case A.1 
(sinusoidal and symmetrical supply voltages) 

D [KVA]  0.017 0.074 1.627 1.649 
λλλλ    0.6828 0.6874 0.6847 0.6740 
λλλλQ    0.6938 0.6970 0.6937 0.6831 
λλλλN    0.9872 0.9862 0.9872 0.9869 
λλλλD    1.0000 0.9999 0.9999 0.9999 

 



Application Examples: 3Application Examples: 3 --phase 3phase 3 --wirewire

 Case B.1 Case B.2 
 PCC Load PCC Load 

A [KVA]  93.267 94.007 89.494 91.207 
P [KW] 63.909 63.334 62.738 62.763 

Q [KVA]  33.274 35.376 33.599 36.159 
N [KVA]  20.873 21.143 20.619 21.296 
D [KVA]  55.421 55.916 50.190 51.171 

Case BCase B: : UnbUnbalanced nonlinear loadalanced nonlinear load
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The apparent, reactive and unbalance power  
accounted to the load are higher than those compute d 

at PCC

D [KVA]  55.421 55.916 50.190 51.171 

λλλλ    0.6852 0.6737 0.7010 0.6881 
λλλλQ    0.8870 0.8730 0.8815 0.8665 
λλλλN    0.9605 0.9601 0.9605 0.9594 
λλλλD    0.8043 0.8039 0.8279 0.8278 

 


