Capítulo III:

ALGORITMO SIMPLEX

PROCEDIMENTO DO MÉTODO SIMPLEX

Passar de solução BÁSICA FACTÍVEL a uma outra, tentando melhorar a FUNÇÃO OBJETIVO.

1. Escolher uma variável não básica que melhore a função objetivo

$$\underline{\mathbf{c}}^{\mathrm{J}} - \underline{\pi} \mathbf{A}^{\mathrm{J}} > \mathbf{0}$$

e colocá-la na base.

2. Escolher uma variável básica para sair da base de modo a manter factibilidade.

$$\begin{cases} x_1 + x_2 & = z \text{ (MAX)} \\ 2x_1 + x_2 + x_3 & = 8 \\ x_1 + 2x_2 & + x_4 & = 7 \\ x_2 & + x_5 = 3 \\ x_i \ge 0 \end{cases}$$

Seja a base $I = \{3, 4, 5\}$

Solução
$$\begin{cases} x_1 = x_2 = 0 \\ \text{básica} \end{cases}$$
 factível
$$\begin{cases} x_3 = 8, x_4 = 7, x_5 = 3 \end{cases}$$

O P. L. já está na FORMA PREPARADA relativa à base I = $\{3, 4, 5\} \Rightarrow x_1 e x_2 são$ candidatas a entrar na base, pois seus coeficientes são positivos e aumentam z.

Escolho x_2 para aumentar (entrar na base) e conservo x_1 a nível zero (fora da base)

PARA MANTER A FACTIBILIDADE

3

CONCLUSÃO: x_2 entra na base (assume valor positivo) x_5 sai da base (assume valor zero)

$$I = \{ 3, 4, 5 \} \Rightarrow I' = \{ 3, 4, 2 \}$$

Colocar o P. L. na forma PREPARADA relativa à base I' \Rightarrow Basta pivotear em torno de A_3^2

x ₁	$\mathbf{x_2}$	X_3	x ₄	X ₅	
1	1				Z
2	1	1			8
1	2		1		7
	1			1	3

x ₁	$\mathbf{x_2}$	\mathbf{x}_3	X ₄	X ₅	
1				-1	z - 3
2		1		-1	5
1			1	-2	1 NOVA SOLUÇÃO BÁSICA FACTÍVEL
	1			1	3

Agora só x_1 faz crescer z. Portanto faço x_1 crescer (entrar na base) e mantenho x_5 a nível zero (fora da base).

PARA MANTER FACTIBILIDADE

CONCLUSÃO:

x₁ entra na base x₄ sai da base

$$I' = \{ 3, 4, 2 \} \Rightarrow I'' = \{ 3, 1, 2 \}$$

Pivotear em torno da A₂¹ (quadro anterior)

Fica:

x ₃ x ₄	x ₁	X ₅	
-1		1	z - 4
1 -2		3	3
1	1	-2	1 NOVA SOLUÇÃO BÁSICA FACTÍVEL
	1	1	3 BASICA FACTIVEL

$$x_5$$
 ainda faz z crescer x_3 bloqueia o crescimento de x_5 \Rightarrow x_5 entra na base x_3 sai da base

$$I'' = \{ 3, 1, 2 \} \Rightarrow I''' = \{ 5, 1, 2 \}$$

x ₁	$\mathbf{x_2}$	$\mathbf{x_3}$	x ₄	X ₅		
		-1/3	-1/3		z - 5	
		1/3	-2/3	1	1	
1		2/3	-1/3		3	SOLUÇÃO BÁSICA ÓTIMA
	1	-1/3	2/3		2	DASICA UTIMA

Todos os coeficientes da função objetivo são não positivos ⇒ z não pode mais aumentar

OBSERVAÇÕES: * solução ilimitada

* solução múltipla

INTERPRETAÇÃO GEOMÉTRICA DO SIMPLEX:

Caminha de ponto extremo em ponto extremo adjacente através da aresta que os liga no sentido ce crescer z.

ALGORITMO SIMPLEX (RESUMIDO)

Supondo consistência, não-redundância e conhecida uma base factível inicial.

- 1. Verificar se a base factível atual é ótima. Se for, terminou. Senão vá para 2.
- 2. Determinar a variável não básica a entrar na base.
- 3. Determinar a variável básica a sair da base.
- 4. Achar a nova solução básica factível (por pivoteamento) e voltar a 1

ALGORITMO SIMPLEX

Supondo consistência, ausência de redundâncias e conhecida uma base factível inicial I :

0/ coloque o problema na forma canônica relativa à base I

1/ determine
$$\hat{c}^s = \text{Max } \hat{c}^i$$

 $i \notin I$

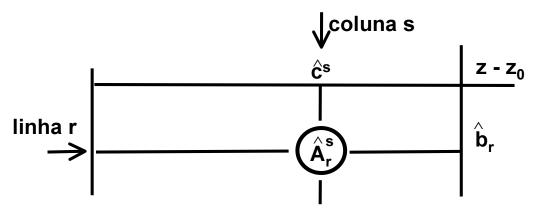
- 1.1 se ĉs ≤ 0, terminou. A solução básica corresponde à base I é ótima
- 1.2 se $\hat{c}^s > 0$, vá para 2/

2/ examine o vetor $\hat{\underline{\mathbf{A}}}^{s}$

- 2.1 se $\hat{\underline{A}}^s \le 0$ (i.e. todos seus componentes são não positivos), terminou. O P.L. tem solução infinita.
- 2.2 se { i/ $\overset{\wedge}{A_i}$ > 0 } $\neq \phi$
 - a) determine r/ $\frac{\hat{b}_r}{\hat{A}_r^s}$ $\begin{cases} Minimo \\ i/\hat{A}_r^s > 0 \end{cases} \begin{cases} \frac{\hat{b}_i}{\hat{A}_i^s} \end{cases}$
 - b) identifique $\, {\stackrel{{}_{}}{A}}_{r}^{\, s} \,$ como elemento pivô. Defina a nova base I' trocando s por r
 - c) pivoteie em torno de \hat{A}_r^s e volte a 1/

CONVERGÊNCIA DO MÉTODO SIMPLEX

Numa interação do SIMPLEX, quando se passa de uma solução básica factível à outra, a função objetivo cresce de Δ z = \hat{c}^s . \hat{b}_r / \hat{A}_r^s



Como por hipótese:

$$\hat{c}^s > 0$$
 (se $\hat{c}^s \le 0 \Rightarrow$ solução ótima)

$$\hat{b}_r > 0$$
 (não degenerescência)

$$\hat{A}_{r}^{s} > 0$$
 (se $\hat{c}^{s} > 0$ e $\hat{A}_{r}^{s} \le 0 \Rightarrow$ solução ilimitada)

Conclui-se:

$$\Delta z > 0$$

Se a função objetivo cresce estritamente a cada iteração e o número de soluções básicas factÍveis é finito, então o método SIMPLEX converge (para uma solução ótima finita ou para uma solução ótima ilimitada) num número finito de passos.

SITUAÇÕES ESPECIAIS NO MÉTODO SIMPLEX

1/ Problemas de minimização Min f(x) = -(Max - f(x))

- 2/ Empate no critério de entrada da variável na base * desempata-se arbitrariamente
- 3/ Empate no critério de saída da variável na base * desempata-se arbitrariamente (solução degenerada)

4/ Ciclagem

Se um P.L. tem soluções básicas factíveis degeneradas, o método SIMPLEX pode ficar indefinidamente se movendo sobre elas (ciclando)

- * é muito raro
- * há regras que evitam ciclagem